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Abstract

Field programmable gate arrays (FPGAs) have been used as alternative computational de-
vices for over a decade; however, they have not been used for traditional scientific com-
puting due to their perceived lack of floating-point performance. In recent years, there has
been a surge of interest in alternatives to traditional microprocessors for high performance
computing. Sandia National Labs began two projects to determine whether FPGAs would
be a suitable alternative to microprocessors for high performance scientific computing and,
if so, how they should be integrated into the system. We present results that indicate that
FPGAs could have a significant impact on future systems. FPGAs have thepotential to
have order of magnitude levels of performance wins on several key algorithms; however,
there are serious questions as to whether the system integration challenge can be met. Fur-
thermore, there remain challenges in FPGA programming and system level reliability when
using FPGA devices.
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Preface

As requested by the IAT, this final report combines the results and experiences from two
LDRD projects exploring the potentials of FPGAs for impacting high performance comput-
ing. The two projects (High Performance Processing architecture (67016) and Enhancing
Simulation Performance on Clusters with Configurable Auxiliary Devices (67018)) began
as independent efforts, but converged in their final year. The different approaches may be
apparent throughout the document, but we have attempted to merge the results to present a
cohesive conclusion.
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Summary

Field-programmable gate arrays (FPGAs) are a technology that has received a lot of atten-
tion in the high performance computing (HPC) community over the last few years. While
FPGAs are widely accepted to offer a tremendous value in metrics such as performance
and performance/power for a significant class of applications, they have not traditionally
been used for the scientific computing applications common on most HPC platforms. In
early literature, results indicated that FPGAs were a poor match to floating-point arithmetic
— and this view was still prevalent in the fall of 2003 when Sandia National Labs started
two projects to explore the use of FPGAs in HPC environments.

In New Mexico, the “High Performance Processing Architecture” project began exploring
the capabilities of FPGAs to support double precision floating-point arithmetic. Our goal
was to determine what levels of peak performance could be achieved on an FPGA and to
determine how common scientific applications would map to FPGAs. We also had a stated
objective of determining how the FPGAs could be integrated into the system.

In California, the “Enhancing Simulation Performance on Clusters with Configurable Aux-
iliary Devices” project focused on communication challenges associated with integrating
accelerators into modern HPC systems. This effort focused on both network-based ap-
proaches (i.e., connecting an FPGA to the system’s network fabric) and localized ap-
proaches (i.e., connecting an accelerator to the host’s I/O subsystem). Multiple applications
were adapted to utilize the FPGA resources in order to gain a better understanding of what
can be achieved with current generation technology.

Our results indicate that FPGAscouldhave a dramatic advantage (10× within the decade)
in peak floating-point performance — if the FPGA vendors decide to focus on the HPC
market. These advantages translate into an even greater advantage in sustained perfor-
mance because the FPGA system can be engineered to deliver dramatically more memory
bandwidth than conventional processors will ever deliver.

Unfortunately, there remain a number of challenges to deploying FPGAs that have not yet
been solved. FPGAs are still remarkably difficult to program and are unlikely to execute
fully general purpose code in the near future. Thus, FPGAs must be integrated into a system
along with a conventional microprocessor. Our results suggest that this system integration
is a particular challenge as FPGAs of the future will need a tight coupling with the processor
through a high bandwidth interface. Indeed, the bandwidth requirements could become so
great as to become unachievable. Finally, major reliability issues remain with single-event
upsets (SEU) that preclude a large scale deployment of FPGAs in the near term.
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Nomenclature

8B/10B A standard encoding scheme used to protect data in communication networks

BRAM Block Ram. A dual-ported bank of memory available within the Xilinx FPGA
architecture

CRC Cyclic Redundancy check: a hash function used to detect errors in data transmissions

CT Computed Tomography

DSP48 A specialized block in Xilinx Virtex4 FPGAs designed to enhance DSP perfor-
mance. The DSP48 is essentially a multiply-accumulate block with additional logic
to cascade mutliple blocks together to create larger operations. A single block can
do a 18x18 bit signed multiply followed by a 48-bit addition.

FFT Fast Fourier Transform

FPGA A field-programmable gate array is a hardware device that can be reprogrammed
at the hardware level on a per application basis. FPGAs are programmed at a partic-
ularly fine grain (gates and flip-flops).

HDL Most FPGA designs are done using a hardware description language (HDL); how-
ever, many efforts are now considering high level language (HLL) compilers.

MGT Multi-Gigabit Transceiver (e.g., Rocket I/O)

MRI magnetic resonance imaging

PE processing element — a single computational block for a particular function

Reconfigurable Computing Reconfigurable computing refers to the practice of using pro-
grammable hardware — hardware that can be “reconfigured” — to implement com-
puting algorithms.

Rocket I/O Multi-Gigabit transceivers in the Xilinx FPGA

RTI Ray-Triangle Intersection

SERDES Serialization/Deserialization — Process of converting between serial and paral-
lel data representations

TCP Transmission Control Protocol - a widely used standard for reliably transmitting data
over a network
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Chapter 1

Introduction

The field of reconfigurable computing dates back almost 15 years. It focuses on the use
of programmable hardwareto implement computational algorithms. In contrast with tra-
ditional microprocessors, programmable hardware tends to run at lower clock rate, but
exposes several orders of magnitude more parallelism. In contrast with ASICs (application
specific integrated circuits), programmable hardware is significantly slower, but dramati-
cally more flexible. Whereas ASICs are typically designed for exactly one purpose, pro-
grammable hardware can be reprogrammed (reconfigured) to meet the needs of whatever
application is running. Thus, reconfigurable computing is often billed as delivering ASIC
levels of performance with microprocessor levels of flexibility. In practice, reconfigurable
computing typically uses field-programmable gate arrays (FPGAs) as the programmable
hardware fabric.

FPGAs are reconfigurable hardware devices that can be programmed to emulate custom
digital hardware that is specified by the end user. FPGA vendors such as Xilinx and Altera
offer a variety of FPGA products that vary in terms of gate capacity (thousands to millions
of user logic gates), power consumption (milliwatt to 20 watts), and cost ($20 to $5,000).
While FPGAs are primarily utilized for prototyping designs before they are fabricated as
ASICs, recent cost and size improvements have motivated industry to utilize FPGAs as
ASIC replacements. These improvements have driven a renewed interest in utilizing FP-
GAs for reconfigurable computing research, as the larger and faster the FPGA, the more
work that can be performed in a single chip.

One of the reasons why FPGA vendors are capable of rapidly improving their products
is that FPGAs are tiled architectures. As illustrated at a high level in Figure 1.1, FPGAs
utilize a two-dimensional array of programmable logic blocks (LBs) to implement the func-
tionality of a user’s design. An individual LB is comprised of one or more n-input lookup
tables (LUTs), simple routing logic, and one or more memory elements. At design compile
time, hardware synthesis tools map the logic functions in a design to truth tables that can
be programmed into LUTs. The tools then place the LUTs in specific LBs and generate
static routes through the FPGA to interconnect resources in the FPGA as required by the
design.

In order to expand into new markets, FPGA vendors have recently begun to include special-
purpose hardware units in their FPGA architectures. The “platform FPGAs” provide devel-
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(a) (b)

Figure 1.1. (a) A high-level representation of an FPGA. (b) The
mapping of a logic function to the LUTs of a LB.

opers with internal memory banks, integer arithmetic units, high-speed network transceivers,
and even dedicated embedded microprocessors. For example, the largest FPGA in the
Xilinx Virtex-II/Pro family features a megabyte of internal memory, twenty 3 Gb/s net-
work transceivers, and two 400 MHz PowerPC 405 processors. These resources make
current generation FPGAs more suitable for different kinds of applications and encourage
researchers to utilize FPGAs in ways that were previously infeasible.

FPGAs have been demonstrated as great performers on DSP algorithms. They show order
of magnitude (or more) benefits in every category from performance to performance/cost
to performance/power. Indeed, FPGAs are beginning to dominate markets that were once
controlled by ASICs and markets that were controlled by DSP processors. For example,
many satellite programs use FPGAs. One big contrast between the DSP domain and the
high performance computing (HPC) domain is the precision of the arithmetic. Where DSP
and image processing applications typical use low precision numbers (narrow integers,
fixed point, narrow floating-point), scientific applications using traditional HPC resources
typically require double precision floating-point. In the past, research has indicated that FP-
GAs were inappropriate for such operations, but the work that spawned these two projects
suggests that the latest FPGA devices can perform respectable amounts of floating-point
arithmetic. Furthermore, a plethora of companies now offer FPGA based accelerators for
HPC systems. Thus, two LDRD projects were created to explore whether FPGAs could be
applied to traditional HPC and, if so, how.
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Our research has demonstrated that FPGAs work quite well for double precision floating-
point. In fact, some trends suggest that FPGAs could actually provide a significantly higher
amount of peak floating-point performance than microprocessors in the near future. More
remarkably, the investigation of algorithms on FPGAs has suggested that FPGAs could
sustain a much higher percentage of that peak performance than microprocessors. In many
cases, this is driven by market forces. Microprocessor vendors must deliver parts to a broad
commercial market that does not have the level of bandwidth demands that many scientific
applications have. Thus, for reasons of cost-effectiveness, microprocessors provide a rela-
tively small amount of memory bandwidth. FPGAs, in contrast, target a market that needs
abundant configurable I/O pins on the device. These I/O pins can be targeted to any pur-
pose; thus, for the HPC market, we could choose to build a system where the FPGA used
all of those pins for memory and had abundant memory bandwidth. In addition, although
not shown here, other research has indicated that Sandia’s scientific applications have more
integer computations than floating-point computations. Microprocessors are balanced for
equal amounts of integer and floating-point arithmetic, but FPGAs can dedicate resources
in whatever balance is required. More importantly, integer computations are the thing that
FPGAs do best; thus, this could give FPGAs a significant advantage.

As a means of complementing our investigation into floating-point use in FPGAs, we also
investigated how much acceleration could be obtained in a practical sense from a real-world
system. For this work we obtained a Cray XD1 system, which features an architecture that
provides a tight coupling between host CPUs and FPGA accelerators. After examining
the low-level characteristics of the XD1 and developing missing infrastructure, we adapted
multiple computational kernels to the XD1’s FPGAs and compared the performance differ-
ence between software and hardware implementations. These experiments revealed several
observations. First, we were able to achieve speedups in all four of our examples even
though our XD1 is only equipped with mid-sized FPGAs. While increasing the FPGA’s
capacity makes it easier to exploit parallelism, it is promising to know that clever architec-
tural planning can still yield performance wins. Second, in multiple cases we found that the
FPGA could easily out-pace the data rate of its connection to host memory. Thus, as good
as an FPGA design may be, performance can ultimately be limited by the performance
characteristics of the host in which it resides. Finally, adapting an algorithm to hardware
(and getting it all to produce the right answers) is a time consuming process. Our appli-
cation kernels and the corresponding host software took between three weeks and three
months to develop and debug.

Having found a number of algorithms where FPGAs perform well, we also explored ques-
tions of system integration. This work had two facets: a practical implementation of net-
work integration components and a simulation based study of an FPGA coupled directly to
a microprocessor. In the network integration work we focused on the task of incorporating
FPGA resources into an existing HPC system by connecting the FPGAs to the system’s
communication network. In order to achieve this goal, we investigated the communication
capabilities of the Xilinx Virtex-II/Pro’s Rocket I/O modules. We ultimately implemented
a fully-functional network interface (NI) that is comprised of a TCP/IP Offload Engine
(TOE) and a Gigabit Ethernet (GigE) unit. We found that the network-based approach
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to system integration was particularly useful in visualization applications (e.g., when an
FPGA is used to generate data that is rendered by a cluster-driven, tiled display wall). The
strength of this approach is that by relying on the network to bridge the gap between sys-
tems, FPGAs could be utilized in a flexible manner. However, it would be ill-advised for
us to suggest that this approach is the right one for general HPC applications. The primary
downside is that networks place a great deal of communication distance between CPUs and
FPGAs. While some applications can tolerate this latency, it is a significant hindrance to
application developers. In studying the interaction with a local microprocessor, we found
that a broad class of operations had very little dependency on the latency of the connection,
but a strong dependence on the bandwidth. In fact, the bandwidth requirements of future
parts could reach so high as to make the coupling impractical. Perhaps more surprisingly,
we found that the proposal by many to simply intercept existing library calls for opera-
tions such as matrix multiply or Fast Fourier Transform (FFT) would simply not work for
the types of application usage scenarios at Sandia. Instead, a much better (non-blocking)
interface would be required.

Despite many positive results, many challenges remain. While our studies have highlighted
some important architectural characteristics, it will still be necessary to define a good ar-
chitecture for integrating the FPGAs into a system. A good architecture will then need
better ways to program the FPGA — application developers will not want to devote months
learning to program hardware and weeks coding even the most simple of operation. In the
current state of the art, the resulting programs would be locked to a single platform and
it is unlikely that application developers would be willing to tolerate that lack of portabil-
ity. Furthermore, current FPGA systems face distinct reliability challenges that must be
addressed before they can be integrated into traditional HPC systems. Finally, the current
cost of FPGA systems currently overshadows their impressive performance. The HPC mar-
ket will need at least an order of magnitude improvement in a performance/cost metric over
traditional systems to make it worth their effort.
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Chapter 2

Related Work

This work is motivated by an extensive body of previous work in floating-point for FPGAs.
A long series of work[33, 2, 5, 10, 22] has investigated the use of custom floating-point for-
mats in FPGAs. There has also been some work in the translation of floating-point to fixed
point[21] and the automatic optimization of the bit widths of floating-point formats[11].
In most cases, these formats are shown to be adequate for some applications, to require
significantly less area to implement than IEEE formats[17], and to run significantly faster
than IEEE formats. Most of these efforts demonstrate that such customized formats enable
significant speedups for certain chosen applications. Unfortunately, many scientific appli-
cations depend on both the dynamic range and high precision of IEEE double-precision
floating-point to maintain numerical stability. Thus, this work focuses on the IEEE stan-
dard. Indeed, some application developers within the DOE labs are beginning to discuss
the need for greater precision than the standard IEEE formats, and such formats may be the
topic of future work.

The earliest work on IEEE floating-point[7] focused on single precision and found that,
although feasible, it was extremely slow. Later work[25] found that the performance was
improving, but still relatively poor. Eventually, it was demonstrated[23] that while FPGAs
were uncompetitive with CPUs in terms of peak FLOPs, they could provide competitive
sustained floating-point performance. Since then, a variety of work[26, 2, 22, 40] has
demonstrated the growing feasibility of IEEE compliant, single precision floating-point
arithmetic and other floating-point formats of approximately that complexity. Indeed, some
work[34] suggests that a collection of FPGAs can provide dramatically higher performance
than a commodity processor.

Floating-Point Algorithms

Our earliest work[37, 38] demonstrated that FPGAs can indeed provide competitive floating-
point performance with a potential for an order of magnitude win in the relatively near fu-
ture This sparked a wave of research into the intersection of traditional high performance,
scientific computing and FPGA based reconfigurable computing that paralleled our own
work. Studies have indicated that FPGA can deliver high performance with the levels of
precision needed by scientific computing[15, 13, 14, 12, 45, 46, 44, 6, 4, 47]. Numerous
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efforts have also begun to study double precision floating-point from the relatively sim-
ple matrix multiply[44] operations to the more complex LU decomposition[12] and sparse
matrix-vector operations[47, 4].

The weakness in the majority of these studies, however, is that they do not consider either
the API to deliver the performance to the application or the system architecture issues such
as bandwidth and latency to the accelerator. Of these recent works, only a handful have
discussed how the performance could be incorporated into an application. The three most
notable examples are a molecular dynamics application[20, 32], a full CG solver[28], and
a traffic simulation engine[36]. The major contribution of Sandia has been to consider the
system level implications of such systems and the requirements for future systems.
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Chapter 3

High Performance Floating-Point
Modules

General Implications for Floating-Point Implementations

Floating-point arithmetic is fundamentally different from typical integer or fixed-point
arithmetic. Where integer and fixed-point values are typically stored in two’s complement,
floating-point numbers are typically stored in signed-magnitude format. Floating-point
numbers also add an exponent field to control the position of the decimal point in the value.
The most widely used floating-point format is the IEEE 754 standard. As an example, the
IEEE double precision floating-point format is shown in Figure 3.1. The mantissa (fraction
part) is 52 bits, the exponent is 11 bits, and the sign is a single bit.

As the figure suggests, the exponent in the IEEE format is maintained inbiasednotation.
For double precision, the bias is 1023 (approximately half the range), meaning an exponent
of −1022 is stored as a 1. The second complication in the format is the use of an implied
1. An implied 1 means that the stored number is maintained in a normalized format such
that there is a 1 immediately to the left of the decimal and the decimal is immediately to
the left of the stored value. This allows the format to have an extra bit of precision without
having to store it. Thus, the value can be extracted as shown in Equation 3.1.

(−1)S×2exp−bias×1.mantissa (3.1)

There are also several special values define in the IEEE standard. These values are formed
by using the reserved exponent values of all ones and all zeroes. The special values are
zero,±∞, and Not a Number (NaN), which is used as the result of meaningless operations
(e.g.∞×0). The reserved special values are summarized in Table 3.1. There is also a class

S

1 52

mantissa

11

exp (+1023)

Figure 3.1. IEEE double precision floating-point format
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Table 3.1.Special values in the IEEE 754 format
Special Value Sign Exponent Mantissa

Zero 0/1 0 0
∞ 0 MAX 0
−∞ 1 MAX 0
NaN 0/1 MAX non-zero

Denormal 0/1 0 non-zero

of values known as denormals, which are represented by a zero exponent and non-zero
mantissa.

Denormals are a special form of IEEE floating-point numbers that provide a small amount
of extra precision as the result of an operation approaches underflow. Unlike most IEEE
floating-point numbers, they do not include the implied one. Instead, they have an exponent
of zero, keep the decimal immediately to the left of the stored value, and allow the first one
to fall anywhere in the stored value. Floating-point hardware within a microprocessor typ-
ically implements denormals with an exception that then computes the value via software.
However, in an FPGA-based implementation, to support full IEEE floating point we must
generally add denormal support into the hardware itself. Thus, for denormal numbers, the
value is extracted as in Equation 3.2.

(−1)S×21−bias×0.mantissa (3.2)

Floating-Point Unit Implementation

The library developed as part of this project includes modules for addition, multiplication,
division and square root. Of these units, the most important are the adder and multiplier,
as they are the most commonly used. In light of this, these units have had correspondingly
more effort put into optimizing them and are discussed in more detail here.

General Considerations

The optimized floating-point units were adapted from units created for another research
project. The original units were written in VHDL and formed the basis of the optimized
units discussed here. There were two reasons to optimize these units: First, modern FP-
GAs are only now reaching a competitive state with CPUs in terms of floating-point perfor-
mance, so the base floating-point units need to provide as much performance as possible.
Second, the FPGA tools had a difficult time maintaining high clock frequencies when many
units were used in a large design. In order to improve both of these, it was decided that
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Table 3.2. Original Floating-point Units versus Optimized Units
(size in slices, latency in cycles and speed in MHz)

Virtex2Pro (-6 speed grade)
Precision Adder Multiplier

Size Lat Speed Size Lat Speed
Single 495 13 195 592 16 176

Single - Optimized 328 10 268 345 11 267

Double 1090 14 143 1608 20 142
Double - Optimized 571 10 204 905 12 207

the units needed to be hand-mapped1 and relationally placed to provide the best possible
performance. The optimized units are written in JHDL[16], which is a structural design
language that allows easy mapping and placing of logic.

The process of hand-mapping the units lead to further architectural enhancements. The en-
hancements allowed for further reductions in size and latency and an increase in operating
frequency. In addition, the relational placement allows the units to maintain higher clock
frequencies in large designs. Table 3.2 shows the size, speed and latency of the original and
optimized adder and multiplier for both double and single precision. The values are taken
for the Virtex2Pro (-6 speed grade), which was one of the fastest parts available at the time
the original library was written.

The table shows that the optimizations provided a 1.8-1.9x improvement in area and a
1.4x increase in clock frequency for the double precision modules. This provided a total
performance improvement of 2.7x for the adder and 2.6x for the multiplier.

Adder Implementation

The double precision adder consists of 9 operational stages. The general makeup of these
stages can be seen in Figure 3.2. The fully pipelined version of the adder registers the data
between each stage (indicated by dashed lines in the figure), and additionally registers the
input before any computation is done, resulting in a latency of 10 clock cycles. The stages
were designed to utilize all inputs to the 4-LUTs whenever possible. This results in both
smaller, faster, and lower latency units.

The first two stages inspect the inputs and prepare them for the alignment step. This in-
cludes determining if either of the inputs is one of the IEEE special values, computing
the alignment shift and swapping the smaller number into the aligment path. The larger
exponent is also chosen as the interim exponent.

1Logic mapping consists of determining how the logic of the circuit maps to the FPGA structure, which
consists mainly of 4-LUTs, but also has other auxillary logic that must be taken into account.
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The third through fifth stages align the mantissas and perform the actual operation. Align-
ment is done through a series of shifting, conceptually implemented by stages which shift
by different powers of 2, allowing any shift value from 0 to 53 to be generated. The ma-
jority of the shifting happens in stages 3 and 4, but the final shift by 1 is merged with the
addition logic. Stages 6 through 9 are used to round the mantissa and renormalize it, if
necessary. Again, in order to reduce circuit size, one stage of shifting is merged with the
aritmetic logic which does the rounding. This happens in stage 7, while the rest of the shift-
ing occurs in the final two stages. In addition to work on the mantissa, stages 7 through 9
also clean up the exponent and handle a variety of exception conditions.

Multiplier Implementation

The double precision multiplier is divided into 10 operational stages2. In addition, there is
a fixed point multiply core which multiplies the two mantissas together. The total latency
of the unit depends on the latency of the multiplier core. For Virtex2Pro, the multiplier core
uses block multipliers and requires 4 cyles, resulting in a total latency of 12 cyles for the
floating-point multiply. In Virtex4, the core uses DSP48 blocks, which include arithmetic
logic in addition to the multiplier. These blocks reduce the required logic, but increase the
latency to 7, bringing the total latency to 15.

Figure 3.3 shows the general breakdown of the stages for the multiplier. The mantissas
are prepared for the multiplier core in the first three stages. This includes unpacking the
numbers, checking for IEEE special values and normalizing a denormal input. The nor-
malization logic includes an optimization which dramatically reduces the size of the unit:
A denormal number is not fully normalized. Instead, the last three stages of shifting (4, 2,
and 1) are removed to save logic. The result is that the backend shift path must be wider.
However, the net result is a reduction of logic. The multiplier core begins operation in stage
F4, and the backend stages (B1 through B4) round the result and prepare the mantissa for
repacking into the IEEE format. The exponent path begins in stage F1 and runs through
stage F6. Stages F4 through F6 operate in parallel with the multiplier core. The front-end
stages add the two exponents together, subtract the bias and subtract the amount that the
mantissa was shifted. In addition, the exponent is adjusted based on any IEEE special val-
ues. This result is then passed to the back end which will adjust it for the case of overflow,
or in the case where the result of the core is greater than or equal to 2 and the mantissa must
be shifted back into the acceptable range.

2There are two versions of the multiplier: one which supports denormal numbers and one which doesn’t.
The unit described here provides full support for denormal numbers.
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Characteristics

To access the quality of the Sandia floating-point modules, we have compared the perfor-
mance characteristics of the floating-point units created in this project to those from Xilinx,
Inc., which is currently the next best library available, in terms of performance.

The data shown in Table 3.3 gives the latency, size and speed characteristics of floating-
point adders and multipliers found in the Sandia and Xilinx floating-point libraries. To
make the comparison as accurate as possible, the units were configured to be as much
alike as possible. This means that the Sandia units have removed denormal support and
discounted the initial registers in both the size and latency fields. Also, the Xilinx double
precision multiplier was created using the “medium usage” option so that it used the same
number (9) of DSP blocks as the Sandia multiplier.

The Sandia floating-point units were mapped to Xilinx Virtex4 parts with a speed grade of
-11. Sizes and speeds for each unit were obtained by placing a single unit in each FPGA
and using the Xilinx place and route tools (ISE 8.1.03i) to determine size and maximum
operating frequency. The numbers for the Xilinx library where found in the Xilinx Floating-
Point Operator v2.0 datasheet. However, attempts to validate these numbers using the
same methodology used for the Sandia units suggest that the Xilinx units are 20% larger
than reported in the data sheets. This discrepancy arises because the datasheet numbers are
determined setting the pack factor to one (-c 1). which constrains the tools to map and place
the design into 1% of the FPGA area, if possible. This option is unlikely to be useful for a
real application because of the clock rate penalty incurred. The table presents two numbers
for the size of the Xilinx units: first, numbers directly from the data sheet (denoted Xilinx
DS) and second, sizes from actual runs (denoted Xilinx) using the default pack factor. For
double precision units, the Sandia adder provides a 1.7X size benefit while maintaining
the same clock frequency and a 25% decrease in latency. The Sandia multiplier is about
one-third the size of the Xilinx multiplier, operates at the same frequency and provides a
40% reduction in latency.
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Table 3.3. Floating-point Unit Characteristics (size in slices, la-
tency in cycles and speed in MHz)

Single Precision on Virtex4 (-11 speed grade)
Library Adder Multiplier

Size Lat Speed Size Lat Speed
Sandia 296 9 360 145 9 319
Xilinx 428 11 377 159 9 396

Xilinx DS 329 11 377 119 9 396

Double Precision on Virtex4 (-11 speed grade)
Library Adder Multiplier

Size Lat Speed Size Lat Speed
Sandia 507 9 275 384 10 274
Xilinx 860 12 271 1181 17 267

Xilinx DS 692 12 271 864 17 267
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Chapter 4

Implications of Trends in FPGA
Performance

As a precursor to the project in New Mexico, we studied trends in the performance of FP-
GAs and FPGA systems. We present the results of that study here for background, along
with a retrospective on changes in those trends. To explore the potential of FPGAs to
deliver their high peak performance to scientific applications, we also explored several im-
portant computational kernels. In this section, we focus on cycle accurate simulations of
the performance of several kernels. We include a discussion of details such as memory
bandwidth requirements and the parallelism required within the kernel. Leveraging data
from our analysis of the trends in FPGA performance, the performance of the kernels was
extrapolated to future systems and requirements, such as memory bandwidth, were extrap-
olated based on future performance levels.

Trends in FPGA Performance

Trends in the floating-point performance of FPGAs were analyzed immediately before the
start of these FPGA projects[37]. The primary results from that work are provided here to
illustrate the potential of FPGAs in the domain of scientific computing. Included after the
2003 analysis is a retrospective which discusses how these trends have held up over the last
3 years.

Peak floating-point performance for both microprocessors and FPGAs is analyzed over the
period from 1997 to 2003 and extrapolated from there. For the microprocessor, perfor-
mance is doubled every 18 months to represent the well known corollary of Moore’s law.
The trend line is forced through the 2003 data point for microprocessors. Since no such
corollary has been established for FPGAs, the trend line is derived by starting with the 1997
data point, selecting a very conservative fit, and rounding the slope down.

Table 4.1 lists the parts chosen for the performance comparison. The commodity micropro-
cessor with the highest peak performance was chosen for each of three years (regardless
of the release date during the year). Since microprocessor performance trends are well
known, only three data points were deemed necessary. Similarly, five FPGAs were chosen
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Table 4.1.Parts used for performance comparison

Year FPGA CPU
1997 XC4085XLA-09 Pentium 266 MHz
1999 Virtex 1000-5
2000 Virtex-E 3200-7 Athlon 1.2 GHz
2001 Virtex-II 6000-5
2003 Virtex-II Pro 100-6 Pentium-4 3.2 GHz

for data points over the course of the same 6 years. An effort was made to choose the
largest, fastest speed grade part with reasonable availability during that year1. For 2001,
a stepping 0 Virtex-II 6000-5 device was chosen. Device stepping 1 was released early
the next year and significantly improved the embedded multiplier performance. The part
chosen for 1997 was chosen to be as representative as possible of the devices that would
have been available; however, there was a constraint on which devices could be placed and
routed for these experiments. The oldest tools that were available were Xilinx 4.2i, which
do not support parts older than the XC4000XLA series. The XC4085XL-2 might have been
a better choice, but the tools available would not target that device.

Admittedly, there are limitations to this type of analysis; however, the conservative as-
sumptions that were made and the dramatic performance improvements projected should
compensate for such limitations so that the “answer” is unchanged. For example, the order
of magnitude performance advantage in 2009 may carry the same cost premium as current
large devices. However, cheaper members of the same FPGA family will likely achieve
a cost and performance advantage since FPGA performance is typically linear within a
family, but cost is almost exponential. A second limitation is the lack of accounting for
structures such as address generation and integer computation units. Such units are typi-
cally very simple in an FPGA. Finally, integration into a system is not considered here.

Addition

Figure 4.1 (a) indicates that FPGAs have significantly higher floating-point addition per-
formance than commodity CPUs. This is a surprising revelation since FPGAs are generally
considered to provide poor floating-point performance at best. More surprising still is the
fact that FPGAs have been ahead for almost four years. The trend line for floating-point ad-
dition on FPGAs projects a growth rate of 4× every two years. This trend line is diverging
from the performance trend line for CPUs, which is only 2× every 18 months. Notably,
double precision addition performance on CPUs has been growing slower than the trend
line from 1997 to 2003.

1These selections were made based on input from Chuck Cremer at Quatra Associates, Jason Moore at
Xilinx, and personal memory.
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FPGAs achieve this significant advantage over CPUs because their resources are config-
urable. If an application requires a very addition rich mixture of instructions, the FPGA
can provide that. In contrast, commodity CPUs have a fixed allocation of resources that can
be successful for a well mixed instruction stream, but has significant limitations in code that
is dominated by one instruction.

Multiplication

FPGAs have not dominated CPUs in floating-point multiplication performance for nearly as
long they have in floating-point addition performance. Figure 4.1(b) indicates that FPGAs
have only exceeded CPUs in multiplication performance since 2001 for double precision
arithmetic. However, the trend lines are diverging more rapidly with multiplication per-
formance growing at an average rate of 5× per year from 1997 to 2003. This is primarily
because of the addition of 18×18 fixed multipliers in the Virtex2 series of parts. The use
of these components to implement the multiply of the mantissas (9 for double precision,
4 for single precision) dramatically reduced the area required. This trend is likely to con-
tinue since architectural improvements (notably faster, wider, fixed multipliers) are likely
to continue.

The CPU performance in Figure 4.1 (b) has grown slightly faster than the Moore’s law
trend line between 1997 and 2003. For double precision, this is primarily because of a
change between 1997 and 2000 to allow multiplies to issue every cycle.

Division

As seen in Figures 4.1 (c), FPGAs have long exceeded CPUs in floating-point division per-
formance — with one minor caveat. An XC4085XLA is not big enough (by a significant
margin) to implement a double precision divider. Thus, the “performance” of a double pre-
cision divider on that part is the fraction of the divider it can implement times the estimated
clock rate. This explains why the 4× trend line overestimates the performance of the 2003
part: components that can implement the operation are constrained to integer multiples of
divide units. The XC4085XLA had a second artificial performance inflation because the
mapper packed the CLBs much tighter to try (in vain) to make it fit. Thus, the area estimate
is significantly smaller than it would otherwise be.

Commodity microprocessors are not well optimized for divide operations. This is a signif-
icant issue for some scientific applications[39]. Slow divides have first and second order
effects: the division instructions are slow (and unpipelined) and these slow instructions
clog the issue queue for modern microprocessors. This makes divide rich applications a
good target for FPGA implementations.
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Figure 4.1. Floating-point performance for:(a) double preci-
sion addition,(b) double precision multiplication, and(c) double
precision division.
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Figure 4.2. Floating-point double precision multiply accumulate
performance

Multiply Accumulate

Multiply accumulate is somewhat different from the other operations considered in that it
is a composite operation. More importantly, it is a composite operation that is fundamental
to a number of matrix operations (including LINPACK). Figure 4.2 indicates that FPGAs
are still somewhat slower than CPUs at performing this operation. FPGAs are, however,
improving at a rate of 4.5× every two years. This improvement rate (effectively a com-
posite of the performance improvements in addition and multiplication) yields a significant
win for FPGAs by the end of the decade.

It would be easy to suggest that the comparison between FPGA and CPU in this case is not
“fair” because the FPGA requires many concurrent multiply accumulates (in one multiply
accumulate functional unit) to overcome the latency of the adder and achieve the projected
performance; however, it should be noted that the Pentium-4 must alternate issuing two
adds and two multiplies2 with 4 cycle and 6 cycle latency, respectively, to achieve its peak
performance [1]. With the small register set in the IA-32 ISA, this is not necessarily easier
to exploit than the concurrency and parallelism available on the FPGA.

Analysis

A common theme among the performance graphs is the flattening of the performance trend
line from 2000 to 2003. This is supported by the data in Figure 4.3, which clearly indicates
a flattening in the growth of area, increase in clock rate, and feature size reduction. This

2The throughput of the SSE2 multiplier is one instruction per 2 cycles. Each instruction can do two
multiplies.
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appears to bode ill for the projected performance trends; however, a closer look at Fig-
ure 4.3 indicates differently. In Figure 4.3(a), the trend in FPGA feature size broke sharply
between 2001 and 2003, but it is still on the same overall trend line for the 6 year period
as CPUs. Indeed, low cost FPGAs have already been introduced on the 90 nm process —
well ahead of CPUs. High performance parts are expected to be introduced next year con-
currently with CPUs based on 90 nm technology. Similarly, Figure 4.3(b) shows that the
pace of FPGA density improvements has dropped sharply from 2000 to 2003, but overall
density increases are still above the Moore’s law projection. Even if a much larger device
(the XC40125EX) was used as the 1997 baseline, the overall density improvement would
remain slightly above the Moore’s law projection.

Figure 4.3(c) seems to tell a slightly different story with regards to clock rate. The “Moore’s
law” trend line for clock rate provides a reference that clearly indicates that clock rate
has not scaled as expected. However, this seeming discrepancy is relatively easy to ex-
plain. The device used as representative of 1997 technology for these experiments was the
XC4085XLA-09. A more accurate part would have been the XC4085XL-2, but the Xil-
inx 4.2i tools that were available for these experiments would not process such a device. A
XC4085XL-2 part is approximately 40% slower than the XC4085XLA-09 part used. Com-
bining this with the significant performance increase that Virtex-II Pro parts should receive
as the tool chain develops trends in clock rates that meet the expectations of Moore’s law.

Improvement in addition and division performance are derived strictly from technology
improvement; however, the 5× every two years performance growth of multipliers will be
difficult to maintain indefinitely. Fortunately, only minor improvements are needed each
generation to realize this gain. This should be readily achievable through 2009 (wider
embedded multipliers, enhanced support for shifting, etc.).

Analysis Retrospective

FPGA vendors have not continued to deliver the level of performance improvements pro-
jected by the analysis here. While many would attribute this to a slowing in clock rate
improvements delivered by Moore’s Law, the reality is more closely related to choices
made by the FPGA vendors. The primarycomputationalmarket for FPGAs is driven by
digital signal processing (DSP) style operations. DSP operations are typically narrow bit
widths and, consequently, shallow pipelines. In contrast, floating-point uses both narrow
and wide datapaths and has very deep pipelines. Similarly, FPGA vendors have chosen
to create product mixes that target a set of domains that do not map well to floating-point
applications. The primary concern is the lack of sufficient numbers of DSP48 blocks which
limits the number of floating-point multipliers that can be built. If FPGA vendors chose
to focus on the HPC market, they could continue to deliver improvements in clock rate
for floating-point operations for a few more generations. This could be done both with
basic architectural changes and with providing a better optimized set of resources. The
latest Xilinx FPGA family, the Virtex5, shows some promise in the direction of architec-
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tural enhancements. The Virtex5 provides wider multiplier blocks (though not as wide as
we would like to see), it also has attempted to increase clock frequency by moving from
4-input LUTs to 6-input LUTs, and by providing a coarser grained carry chain. However,
it is unclear if Xilinx will provide a part with a good mix of these components (this only
family currently released does not have a good mix of logic to multipliers).

The story with microprocessors is more complex. While microprocessors had been falling
off of the trend of doubling performance every 18 months, recent developments, such as
the move to 4 FLOPs per clock, have suggested that the microprocessor vendors are again
looking to architectural changes for performance. These changes are likely driven by the
perception of competition from the accelerator market, and have even led Intel to announce
a prototype “teraFLOP on a chip”. These types of advances could significantly erode many
of the advantages an FPGA may have; however, the microprocessor market isnotcurrently
expanding memory bandwidth, so FPGAs could still deliver a significant advantage insus-
tainedperformance.

Kernels Explored in Simulation

We explored four kernels in cycle accurate hardware description language (HDL) level
simulation. These included three basic linear algebra subroutines (BLAS): a matrix-matrix
multiply (DGEMM), a matrix-vector multiply (DGEMV), and a dot product (DDOT). We
also explored the fast Fourier transform (FFT). Here, we present results from DGEMM,
DGEMV, and FFT as they represent three unique points in the spectrum.

Matrix multiply (DGEMM) is a completely computationally bound code in the sizes that
most people study. Because it performsN3 operations overN2 data with numerous inde-
pendent operations, it is highly amenable to sustaining high levels of performance on both
FPGAs and microprocessors. In contrast, a matrix-vector multiply (DGEMV) requires as
many memory operations as floating-point operations. This is much more representative
of many codes at Sandia (an iterative solver, for example). Finally, the FFT operation has
a much more complex control flow and more data dependencies than either DGEMM or
DGEMV operations. Thus, the three kernels we present here highlight three unique facets
of how FPGAs behave on floating-point operations.

Matrix Multiply

The standard matrix multiply (the DGEMM BLAS routine) is defined as:

Ci j =
N−1

∑
k=0

A ikBk j +Ci j (4.1)
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Figure 4.4. Maximum achievable performance versus memory
bandwidth and matrix size

In the best case, this requires 4N2 memory accesses3 and performs 2N3 floating-point op-
erations. This yieldsN2 floating-point operations for each element retrieved from memory.
Achieving the best case, however, imposes the unrealistic requirement that two matrices be
cached in the processor. Fortunately, proper use of caching in modern processors allows
them to sustain a high percentage of peak with relatively low memory bandwidth. If each
matrix only had to be retrieved from memory once, the maximum sustainable floating-point
rate would be:

FLOPs=
N
2 ×BW

8
(4.2)

whereBW is the memory bandwidth in bytes per second,N is the dimension of the matrix,
and 8 bytes are required to store a floating-point number. This is graphed in Figure 4.4 on
a log-log graph.

Typically, however, the processor cannot store all of the matrices involved. Instead, some
form of blocking is used to divide the matrix into smaller pieces[42]. These smaller pieces
are loaded into the processor, the computations are performed on them, and the partial
results stored. For example, for a 64×64 matrix multiply, each matrix might be broken
into 64 regions that are 8×8. A row of these blocks would then be multiplied by a column
of these blocks to create an 8×8 block of the result. In the process, the partial result (an
8×8 block) would be updated 8 times (although typically in local storage or cache). The
ultimate result is that the matrices are fetched several times more than would otherwise be
necessary. For blocks of dimensionS, this yields a factor ofNS increase in accesses to theA

andB matrices, leading to 2N2+ 2N3

S memory accesses. For large matrices, this approaches

3This assumes square matrices and includes retrieving three matrices and storing one matrix.
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a floating-point rate of:

FLOPs=
S×BW

8
(4.3)

FPGA Implementation

One way to view matrix multiplication is as a collection ofN matrix-vector multiplications.
As such, it exhibits significantly more parallelism. Unfortunately, it is impractical to store
all of a matrix in most modern devices (with the possible exception of the Itanium chips
with the largest caches) for reasonable matrix sizes. Thus, the implementation chosen
(shown in Figure 4.5) resembles a collection of matrix-vector multiplications, but blocks
the matrix to reduce total storage requirements.

To perform the matrix multiplication, aS× S
m section of a block of the matrixB in column

major order is loaded into each ofm MACC units. Simultaneously, the matching block of
the matrixC is also loaded into the MACC unit in column major order. This requires a total
of 6S2 elements of storage at 8 bytes per element. The corresponding block ofA is loaded
into a FIFO that is used to broadcast it to all MACC unitsS

m times (also in column major
order). Each MACC unit createsS replicas of each element ofB to match the number of
rows ofA that will be multiplied with it. This provides the concurrency needed to hide all
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of the latency of the adder. As each element ofB andC is used, it is discarded. When the
MACC unit finishes, it produces an intermediate version of the resultC. This intermediate
is fed back to the input to be added to the multiplication of the next pair of blocks fromA
andB. When the final version of a block ofC is produced, it is stored. Overall, this requires
no more than 6S2 elements of storage at 8 bytes per element. This includes 2 copies of each
matrix block — one to operate on and one to change it from row major to column major
order.

Performance Comparisons

Matrix multiply is not typically memory bound. With relatively little caching, modern mi-
croprocessors can achieve a high percentage of peak performance with commodity memory
attached. As seen in Figure 4.6, this enables microprocessors to maintain an edge over FP-
GAs and RC platforms up through 2003. For this graph, data points for the CPUs in 2000
and 2003 were measured and the data point for the CPU in 1997 was taken from [41]. The
extrapolated trend line projects a 4.5× growth in performance every 3 years.

Like microprocessors, the performance of matrix multiply on FPGAs is unconstrained by
any architectural features. As such, the rate of growth (4.5× every two years) is the same
as for the multiply-add performance projected in [37]. Recent reconfigurable computing
platforms are also included in this comparison. These platforms often use multiple FPGAs
and provide a “realistic” design point with a “realistic” memory bandwidth.4 Most points
are estimated, but an implementation on the Osiris board to validate the estimates has been
simulated. Extrapolating the trend yields a performance growth rate of 3.25× every two

4Realistic in that people buy it, but not realistic in a cost comparison with traditional processors.
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years. This is lower than the FPGA growth rate because the number of FPGAs on RC
platforms has been steadily decreasing. This growth rate may accelerate over the coming
years (since less than one chip per board is unlikely).

Reconfigurable computing platforms also demonstrate the same characteristics (peak per-
formance and performance growth) as matrix-vector multiply. Again, all but one of these
points are currently estimated, but an implementation has validated one data point on an
Osiris board.

Memory Requirements

The key feature that distinguishes matrix multiplication from matrix-vector multiplication
is that it requires much less memory bandwidth to maintain peak performance. This is
an important factor since supercomputing applications of FPGAs are unlikely to provide
the level of memory bandwidth that many RC platforms provide (due to the additional
cost and negative reliability implications of several extra banks of memory). As such, it
is important to examine the storage needs of FPGAs relative to their peak bandwidth and
peak performance.

Figure 4.7(a) illustrates the high levels of performance achievable with relatively little
memory bandwidth and sufficient internal storage. For example, the 4 GFLOP/s of peak
floating-point capability available in 2003 can be sustained with only 512 MB/s of memory
bandwidth and only 192 KB of internal storage in the FPGA. This easily falls within the
limits of even the Virtex-II family. The important observation here is that internal memory
can be traded for external memory bandwidth.

The flip side of this analysis is to consider the amount of internal memory needed for
various memory bandwidth and block size combinations. Figure 4.7(b) compares the size
of the internal cache needed to the amount of memory bandwidth needed and the block size.
By 2009, FPGA platforms will need to provide several gigabytes per second of memory
bandwidth or several megabytes of internal storage. For this algorithm, however, both the
memory bandwidth and internal storage needed to maintain peak performance appear to be
easily achievable.

An interesting revelation from this analysis is the significant gains in efficiency that FP-
GAs achieve. These gains appear to arise from the ability to explicitly manage internal
storage and the high aggregate internal memory bandwidth. Commodity processors typ-
ically achieve only 80-90% of their peak performance on dense matrix multiplies while
requiring hundreds of kilobytes of cache and gigabytes per second of memory bandwidth.
By contrast, the FPGA only requires 192 KB of storage and 512 MB/s of external memory
bandwidth. If this trend holds for other algorithms, it will be a significant advantage for
FPGAs in the realm of high performance computing.
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Figure 4.7. (a) Maximum achievable performance versus mem-
ory bandwidth and block size; (b) Memory needed in an FPGA to
maintain peak performance versus memory bandwidth and block
size

Matrix-Vector Multiply

TheDGEMV BLAS routine is defined as:

wi =
N−1

∑
j=0

A i j y j +z j (4.4)

The lower bound on memory accesses isN2+3N (it must retrieve a matrix and two vectors
and store one vector) and performs 2N2 floating-point operations. Achieving that requires
that the vector be cached in the processor. In the limit, two floating-point operations are
performed for each element retrieved from memory.DGEMV is also a memory limited oper-
ation on microprocessors. The maximum sustainable floating-point rate is:

FLOPs=
2×BW

8
(4.5)

whereBW is the memory bandwidth in bytes per second and 8 bytes are required to store a
floating-point number. This is graphed in Figure 4.8 on a log-log graph.

FPGA Implementation

Matrix-vector multiplication has somewhat less inherent parallelism than matrix multiply.
When the matrix dimension is greater than the depth of the addition pipeline, it is possible
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to use all of the floating-point capabilities of the FPGA without making special adaptations
to the multiply accumulate unit. Instead, a standard MACC (shown in Figure 4.9) is used
with additional storage and control outside of it as shown in Figure 4.10.

The design in Figure 4.10 assumes that the matrix,A, is stored in one logical memory with
a bandwidth that will support some number of MACC units,m. Thus, the vectorsy andz
are loaded and broadcast to all of the MACC units while the matrix is fetched from memory
and distributed to the MACC units. Before broadcasting to the MACC units, each element
of y is replicatedk times (wherek is the pipeline depth of the adder). Effectively, there
arek rows of the matrix being multiplied with the vector in each MACC unit. The vector
z is used to initialize the summation unit. Thus, one MACC unit is fed thejth element of
k rows to matchk copies of thejth element ofy. The matrix data can be fetched directly
in this order from SRAM memories or can be fetched in larger pieces from SDRAM with
re-ordering performed in the matrix fetch unit. Note that, once loaded,y is reused (through
the feedback path)N

k×m times. This design does not apply the scalar multiples toy andz
that are indicated in the standard, but such a change would be relatively simple.

The limitation of this approach is the need to store a vector for large values ofN. The alter-
native is to divide the vector into parts of lengthL and perform the equivalent ofN

L smaller
matrix-vector multiplies. The first would add the vectorz to the result (as in Equation 4.4)
and subsequent portions of the operation would add the intermediate result in place ofz.
This would increase the number of memory accesses toN2 + 3N2

L . For FPGAs from 1999
and forward, anL value of 2000 is achievable. Thus, theN2 term for the matrix access
still dominates. This issue would only serve to decrease performance estimates for earlier
FPGAs (thus skewing the trend line) and will not be considered further.
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Performance Comparisons

Unlike matrix multiply, matrix-vector multiplication is typically a memory bound opera-
tion; however, devices that provide enough memory bandwidth shift the limitation to the
floating-point performance of the device. The performance of recent RC platforms is com-
pared with recent commodity CPUs and the peak performance possible with a single FPGA
in Figure 4.11. CPU performance was measured for the 2000 and 2003 data points with
anN of 10005 and estimated for the 1997 data point based on the differences in memory
bandwidth and architecture.6

Like DGEMM, peakDGEMV for the FPGAs is based on the maximum multiply accumulate
performance of the FPGA. This is because the use of all of the FPGA pins for memory
provides abundant bandwidth to achieve the peak performance.DGEMV also has sufficient
independent parallelism to enable the FPGA to achieve its full peak performance on smaller
matrix and vector sizes. Extrapolating this trend yields the same 4.5× growth every two
years as the dot product since the FPGA pin bandwidth never becomes the limiting factor.

Recent reconfigurable computing platforms are also included in this comparison. Most
points are estimated, but an implementation on the Osiris board to validate the estimates
has been simulated. Using the same assumptions used for the vector dot product yields a
performance growth rate of 3.25× every two years. This is lower than the FPGA growth
rate because the number of FPGAs on RC platforms has been steadily decreasing. This
growth rate may accelerate over the coming years (since less than one chip per board is

5Performance was constant across a wide range of values forN.
6This is a best case estimate assuming the older processor could sustain as much of the peak memory

bandwidth as the newer processors.
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unlikely). Nonetheless, since 1999, RC platforms have had both higher performance than
commodity CPUs and a higher rate of growth. As a note, the performance for the 1997
RC platform data point is particularly low because the XC4000 series parts did not have
sufficient internal storage to store a vector of any significant length. This would give the
trend line an artificially low starting point and artificially steep slope7, but the trend is
established based on the performance the 1997 part would achieve if it had internal storage.

The final point for discussion is the amount of storage needed to achieve this performance.
As noted, the XC4000 series had insufficient internal storage to achieve the full potential
of the 1997 RC platform. The Virtex 1000 part, however, has enough storage for 1000
vector elements. The Virtex-2 6000 has enough storage for 10000 vector elements and the
Virtex-2Pro series has even more storage. As long as the total storage in an FPGA is not
decreased (an unlikely scenario), FPGAs already have abundant storage for matrix-vector
multiplication.

Fast Fourier Transform (FFT)

The FFT is an optimized implementation of the Discrete Fourier Transform (DFT). The
fundamental calculation of theN point DFT is described as:

Y[ j] =
N1−1

∑
k=0

X[k]W jk
N ; where W jk

N = e
−i2π jk

N (4.6)

When implementing the DFT as an FFT[35], there are many ways to structure the compu-
tation. The first decision to make — the radix of the operation — determines how many
data items are combined in any given stage. Radix-2, where each stage of computation
operates pairwise on the data set, was chosen for several reasons, including its simplicity.
Radix-2 also yields the smallest butterfly unit, which allows for greater flexibility in study-
ing the design space. Other radixes reduce the total number of operations, but increase
the complexity and reduce the flexibility. Similarly, multiple-radix designs can increase
flexibility.

Given a radix, there is still flexibility in formulating the computation. One formulation
yields a basic computational kernel consisting of a single complex multiplication and two
complex additions, as shown in Figure 4.12(a). This structure is commonly referred to as
a butterfly because of the crossing dependencies. The radix-2 FFT is made up oflog2(N)
stages, where each stage computesN

2 butterflies.

There are two main ways to structure the stages, shown in Figure 4.13. A butterfly unit in
a stage operates on a pair of results from the previous stage separated by an increasing (a)

7Although the embedded memories in newer FPGAs could be considered an architectural improvement
(making this valid), similar improvements for matrix-vector multiplication are unlikely to occur.
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or decreasing (b) distance. Each of these structures requires a data reordering, either on the
front- or back-end. We chose to reorder on the back-end as it allowed us to do the biggest
butterflies first, providing more independent data sets with each progressive stage. Both
approaches produce the same results, but in a different order.

The butterfly computation requires 4 real multiplications and 6 real additions. The hard-
ware used in this study does these computations using 2 floating-point multipliers and 3
floating-point adders, as shown in Figure 4.12(b) On average, the hardware accepts one
new complex number per cycle and generates one complex output per cycle. Each floating-
point unit is used twice for each set of inputs, providing the total operations required for
the butterfly. This design for the butterfly unit was chosen because it provides the great-
est flexibility. It only requires a memory bandwidth of one complex data item per cycle,
letting memory bandwidth scale more evenly. The bandwidth in and out of the unit also
matches the bandwidth of on-chip dual-port block rams, allowing a single butterfly unit to
be coupled with a single set of block rams on the chip.

In evaluating the performance of the FFT, the floating-point operation count that is typi-
cally used is 5Nlog2(N); there arelog2(N) stages that each contain 5N computations (four
multiplies and six additions for each pair of data). These numbers only hold strictly for
radix-2, though they are a good approximation for other radixes. As the radix increases,
the number of stages goes down, but stage complexity increases.

The minimal data transfers to memory for the FFT is 2N elements with each element being
16 bytes for double precision complex numbers. This gives 32N bytes for a best case
overall bytes per FLOP requirement of 32

5log2(N) . The actual bytes per FLOP requirement,
however, will depend on how much of the data can be successfully cached on chip. This is
discussed further in the discussion of each algorithm.

Parallel FFT Implementation

Parallelism in the FFT computation can be exploited in two ways: pipelined units, or par-
allelism in the stages (S), and parallel units, or parallelism (P) within a stage. The parallel
design point explores the extreme where all of the parallelism is within a single stage as
shown in Figure 4.14. In this mode, data is read from external memory, processed itera-
tively, and written to external memory. Each of the butterfly units operates on a different
range of the data; each unit iterates (mostly) independently through all the stages of the
computation. All of the butterfly units are used for the entire computation, but the overall
throughput is constrained by external memory bandwidth. The number of cycles needed to
compute an FFT using this scheme is:

T =
2N
BW

+BL+(
N
P

+BL)(log2(N)−2) (4.7)
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The first term of Equation 4.7 is the time to read and then writeN items based on the
memory bandwidth,BW, in terms of complex double precision floating-point items per
cycle. The usable bandwidth is limited to the number of units,P. The second term is the
latency of passing through the butterfly units during the read from memory. The third term
is the time to perform the iterations — usingP butterfly units of latencyBL for log2(N)−2
iterations assuming that the first and last iteration are performed as part of reading and
writing the data.

All of the FFT designs require internal storage for both data and “twiddle factors” (W jk
N ).

In the parallel implementation, the data storage requiresN double precision complex data
items. This one storage area is reused by all iterations and must supply sufficient bandwidth
to support the number of parallel processing units; thus, using off-chip memory is not
practical. The total number of twiddle factor constants needed is equivalent toN

4 storage
locations of 16 bytes (complex double-precision numbers).

Pipelined FFT Implementation

At the other extreme, one butterfly unit can be dedicated to each of the stages of the FFT
in a pipelined fashion as illustrated in Figure 4.15. Data is read from memory and passed
through a series of butterfly units before being written back to memory. Data delays and
permutations are needed between each of the stages and between the pipelined FFT unit and
DRAM memory. When the number of stages,S, that can be implemented in the FPGA is
less than the number of stages needed by the FFT (log2(N)), then log2(N)

S passes to memory
are needed, with a the final pass being a subset,R, of the stages. For each pass to memory,
data must be read and written in a particular permutation to optimize the delay and stor-
age requirements in the pipeline (not described here). The number of cycles required to
compute an FFT using a pipelined approach is:
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Figure 4.15.Architecture of the Pipelined FFT

T = P(S)×
⌊

log2(N)
S

⌋
+P(R) (4.8)

P(J) = BL×J+ I(J)+
2N
BW

+(B−1)×2J (4.9)

I(K) =
K−1

∑
i=0

B×2i ≈ B×2K (4.10)

R = log2(N) mod S (4.11)

Each pass,P(J), throughJ butterfly stages (each having a latency ofBL) requires the
time shown in Equation 4.9. Data dependencies between the stages introduce a delay that
doubles at each stage and create a total inter-stage delay given byI(K). The burst length
of standard DRAM memories introduce a penalty associated with the burst length,B, to
both the interstage delay and a back-end reordering time. The time to retrieve the data
from memory and write it back is defined by2N

BW ; however, a note is in order. The usable
bandwidth is limited to one complex double precision floating-point number per cycle per
direction due to the limited throughput of the butterfly unit. The final term represents the
final pass through a subset of the stages,R, with the corresponding delays.

The pipelined FFT implementation has two significant disadvantages. Foremost, the high
latency of the overall pipeline means that many of the butterfly units sit idle while the
pipeline is initialized and while it is flushed; thus, if the overall computation is short relative
to the pipeline delay, the sustained performance is low. In addition, if the number of FFT
stages is not an even multiple of the number of hardware stages, many of the hardware
resources sit idle on the final pass. The primary advantages of this implementation are
the limited requirement for memory bandwidth and the limited requirement for internal
memory for relatively short pipelines. In the prototype implementation, for example, a
six stage pipeline is implemented, which more fully utilizes the Virtex-2Pro 100 and only
requires a fraction of the memory needed by the parallel implementation.
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Figure 4.16.Architecture of the Parallel-Pipelined FFT

The on-chip memory requirements for the pipelined version are almost entirely dependent
on the number of stages. The reordering buffer between butterfly stages is3×2i

2 elements,

wherei is the stage number. This gives a total of3×2S

2 items of storage for the items being
transformed. Due to the organization of the computation, the twiddle factors require3N

8
locations to store the values in a way that provides the bandwidth to provide the twiddle
factors to the appropriate butterfly units.

Parallel-Pipelined FFT Implementation

Figure 4.16 is the cross between the two previous architectures. Data moves from external
memory, through a set of parallel pipelines, and back to external memory. The firstlog2(P)
stages must have additional data exchange circuits (for the first pass through the pipeline)
as these stages have data dependencies between the pipelines. This approach leverages the
ability of the pipelined architecture to reduce bandwidth demands and the ability of the
parallel architecture to tolerate shorter input vectors (as well as a wider variety of vector
lengths) than the pure pipelined approach. In contrast, the parallel-pipelined hybrid has a
higher bandwidth demand than the purely pipelined approach and less tolerance of short
vectors than the parallel approach.

The number of cycles to compute the FFT using this approach is the same as that for
the pipelined approach. The difference is that it raises the amount of bandwidth that the
pipeline can accept and shortens the number of pipeline stages. The overall memory re-
quirements, however, are significantly increased in the near term. The data storage require-
ments fall toP× 3×2S

2 . Since the number of stages has been reduced by a factor ofP, this
is actually a factor of 2P/P fewer items. For the twiddle factors, the storage grows to an
upper limit ofN storage locations (independent of the number of stages or the parallelism)
to provide both the necessary storage and the necessary bandwidth.
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Figure 4.17. A comparison of the(a,c) performance and
(b,d)memory requirement of FFT implementations

Comparison of Architectures

The “right” FFT architecture varies not just with the size of the FFT, but also with the
size of the FPGA. This section explores the performance of each of the architectures given
different memory bandwidths and the ability to fit varying numbers of units in the FPGA.

Figures 4.17(a) and (b) shows the estimated performance of several possible configura-
tions for a modern FPGA. The most notable result is that the extreme depth of the pipeline
combined with the inability to leverage additional memory bandwidth leave the pipelined
implementation at a clear disadvantage to the parallel implementation until nearly 256K
samples are processed. The only configurations presented for the parallel-pipelined imple-
mentation match the memory bandwidth to the number of parallel pipes,P. The parallel-
pipelined implementations shown have an advantage over the parallel approach because of
the depth of each parallel pipe. Finally, Table 4.2 contains the parallelism,P, and stages,
S, for the parallel-pipelined implementations. Correlating Figures 4.17 with Table 4.2 in-
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Table 4.2.Parallel pipeline shapes

BW Units P S BW Units P S
4 12 2 6 4 16 2 8
4 24 2 12 4 32 2 16
8 12 4 3 8 16 4 4
8 24 4 6 8 32 4 8
16 24 8 3 16 32 8 4

Table 4.3.Memory requirements summary

Arch Min Memory Max
BW

Parallel N+ N
4 P

Pipelined 3×2S

2 + 3N
8 +(B−1)×2S 2

Hybrid P× 3×2S

2 +N+(B−1)×2S 2P

dicates that arrangements which are more “square” have better performance.

In terms of memory requirements, the maximum size of an FFT that can be processed is
approximately 128K points. This levels out because more and more internal memory is
required to provide the bandwidth needed for all of the butterfly units. FPGA memories
tend to run at the same frequency as the logic; thus, more ports are needed to feed more
units. This is similar to, but different from microprocessors where the number of units is
small and, therefore, so is the number of ports from cache.

Moving out one generation yields 16 units for the parallel path and 24 units for the pipelined
approaches. The results for these are shown in Figures 4.17(c) and (d). As can be seen from
these figures, the purely pipelined approach no longer makes sense in terms of performance
for reasonable values ofN or in terms of memory. It is also unable to use the memory
bandwidth that will be available in this time frame. The growth in memory for the three
architectures is summarized in Table 4.3. Narrow values ofP for the parallel-pipelined
version have significant disadvantages as the number of units increases. At equivalent
bandwidths, the parallel-pipelined approach does not outperform the parallel approach until
N is over 2048.

FPGAs vs. CPUs

Figure 4.18 compares estimates of performance for FPGAs and CPUs over the next few
years. The data for the 2.8 GHz Pentium-4 is from [9] using the Intel MKL. The 3.8 GHz
Pentium-4 data was estimated using the ratio of the clock frequencies. Beyond that, CPUs
are assumed to double in performance every 18 months, following the widely accepted
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Figure 4.18.FPGAs vs. CPUs on current technology (2005)(a),
in two years (2007)(b), and in four years (2009)(c)

55



corollary to Moore’s Law (starting with the 3.8 GHz Pentium-4). Initial versions of the
prototypes on FPGAs indicate that the design will run at 160 MHz on a Virtex-2Pro 100-6
and FPGAs are assumed to double in clock frequency and area every two years following
historical trends[37].

The size of a single FFT must currently approach 8K items for the FPGA to outperform a
microprocessor and microprocessors currently have a dramatic advantage for small FFTs.
Within two years, the FPGAs should have an advantage for FFTs as small as 1024 items,
and within 4 years, that advantage is expected to be dramatic for larger sizes. Note that the
far right hand side of the graph is not particularly fair since FPGAs do not have the internal
memory to achieve that level of performance. Also, the elbow in the CPU curve will move
to the right in future generations as the cache size grows; however, the comparison does
not change as the CPU curve is still flat at 1024 elements while the FPGA performance is
still growing.

Analysis Summary

The analysis of these three kernels indicates that FPGAs can sustain a very high percent-
age of peak performance over domains of interest. For cache oriented operations such as
DGEMM, FPGAs are able to sustain a higher fraction of peak performance than many mi-
croprocessors while using less internal memory and less memory bandwidth. This is more
a function of the programmability of the internal storage (rather than using it as a cache)
than it is a special property of the FPGA itself. In contrast, DGEMV performs so well on
FPGAs because FPGAs offer more memory bandwidth than microprocessors. This is not
because FPGAs exploit a superior technology. Instead, it is a simple matter of economics:
microprocessors cannot afford to deliver bandwidth that the majority of their consumers
do not need. The FPGA market, in contrast, requires many programmable I/O pins that
can be dedicated to any purpose. In the case of scientific computing, many of those would
be dedicated to memory bandwidth. Finally, for FFT, FPGAs are somewhat constrained
by their high floating-point unit latency for single, small FFTs. For large FFTs, however,
FPGAs again demonstrate an advantage delivered by higher memory bandwidth.
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Chapter 5

Implementations on a Real World
System

A key step in predicting how a technology can be utilized in the future is evaluating how
well it performs today. In order to gain a low-level understanding of current-generation
reconfigurable computing issues, the California LDRD team purchased (with non-LDRD
funds) a leading-edge HPC system with FPGA resources and focused on examining tech-
niques by which applications could take advantage of the hardware. After investigating
several commercial HPC platforms, we decided that the Cray XD1 provided an architec-
ture that best met our interests. Following initial experiments with the XD1, we proceeded
to adapt four different algorithms to make use of the XD1’s FPGA hardware.

The Cray XD1

The Cray XD1 (Figure 5.1(a)) is an appealing arechitecture for reconfigurable computing
research because it provides a dense multiprocessor system that features both host pro-
cessors and FPGA accelerators. A single rack of an XD1 system houses six independent
compute blades. As illustrated in Figure 5.1(b), each blade is equipped with two AMD
Opteron processors, DDR memory, a hard disk, and a network interface (NI) that enables
the blade to communicate with other blades through an InfiniBand-like network1. In or-
der to maximize network performance, the NI is connected to the blade’s CPUs through a
HyperTransport link that is 1.6 GB/s in both directions.

Cray also produces an optional FPGA accelerator card that can be plugged into a propri-
etary HT connector on an XD1 compute blade. This accelerator card provides an additional
NI for interactions with a secondary communication network and a user-programmable
FPGA that can be utilized as a computational accelerator by applications running on the
blade. In order to allow a sizable amount of data to be stored in close proximity to the
FPGA, the accelerator card is equipped with four 4 MB banks of QDR2 memory that are
connected directly to the FPGA. The fact that the memory is QDR2 enables an FPGA ap-

1While the XD1 utilizes InfiniBand hardware at the physical layer, Cray has implemented its own commu-
nication substrate called Rapid Array on top of the hardware. This communication software is incompatible
with existing InfiniBand hardware/software.
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(a) (b)

Figure 5.1. (a) A single rack of a Cray XD1. (b) A high-level
representation of the XD1 architecture.

plication to read 64-bits of dataandwrite 64-bits of data to each memory bank every clock
cycle, at speeds of up to 200 MHz.

Development Components

Cray provides twoclosed-sourcehardware components (i.e., cores) for simplifying the con-
struction of FPGA accelerator hardware. The first of these cores is a HT communication
engine for managing interactions with the host blade’s memory system. This core handles
low-level transactions on the HT bus and steps DDR signals down to a wider, single data
rate (SDR) form that is easier for end users to work with. The HT core provides read and
write interfaces for both FPGA-initiated requests and HT fabric-initiated requests. Unfor-
tunately, this core does not hide all of the low-level details about HT from the user2. As a
means of simplifying development, we have constructed our own DMA transfer engine that
provides a continuous view of host memory for FPGA users. The second core provide by
Cray implements a memory interface for accessing the accelerator card’s external QDR2
memory. This core hides the low-level details of dual-ported DDR memory from the user
and is straightforward to utilize. In addition to these cores, Cray provides a set of VHDL
reference designs that demonstrate how the FPGA can be utilized by end applications in
the XD1 environment.

In terms of RC software, Cray provides a basic library for controlling low-level interac-

2For example, the user is limited to a maximum of eight 64-bit words in a transfer, and transfers cannot
cross a segment boundary of eight 64-bit words.
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tions with a compute blade’s local FPGA. This software allows users to program different
hardware configurations into the FPGA as needed by the application (as opposed to au-
tomatically programming the FPGA on-demand). Unfortunately, the software does not
implement a robust access control system for the FPGA resources. As a result, users are
expected to work in a cooperative manner that time-shares use of the FPGA. This approach
is fairly common among RC platforms, and is not a major concern in most research envi-
ronments.

CPU-FPGA Data Transfers in the XD1

RC performance in an HPC platform often hinges on the system’s ability to rapidly move
data between a host application and an FPGA accelerator. Without a high-bandwidth, low-
latency connection to the host CPU, an FPGA can only be utilized in coarse-grained appli-
cations. Fortunately, the XD1 architecture provides a full duplex connection between the
CPU and accelerator that in theory is capable of supporting simultaneously transferring 1.6
GB/s (1.4 GB/s after overhead) in each direction.

There are three ways that data can be moved between a host application and an FPGA ac-
celerator in the XD1. First, a host application can read or write one of a limited number
of FPGA application registers through a system call that is provided by the FPGA’s device
driver. While this interface is slow (a single write may take as long as 500 ns to execute),
operations are guaranteed to take place in the order that they are issued. Second, an ap-
plication can write/read data to/from the FPGA’s address space using memory-mapped I/O
techniques. This method provides exceptional write performance because write-combining
allows individual I/O operations to be bundled into bursts. However, users must be aware
of write consistency issues that arise from write combining. Finally, the FPGA can be in-
structed to issue DMA requests to physical memory. In order to facilitate this work, the
FPGA’s device driver allocates and pins a 2 MB block of contiguous memory for 1-copy
transfers, and provides virtual-to-physical address translation functions in order to refer-
ence the memory.

We conducted two experiments to observe the low-level performance characteristics asso-
ciated with transferring data between a CPU and an FPGA on an XD1 blade. In the first
experiment we measured the bandwidth that could be obtained when transferring different
data sizes between the host CPU and FPGA. We performed both read and write tests using
both host-initiated transfers and FPGA-initiated transfers. As Figure 5.2(a) illustrates, per-
formance is always best when push-based mechanisms are used to transfer data from one
resource to another. Host-initiated writes yielded the best overall performance, achieving
half the maximum bandwidth at message sizes of only 64 bytes.FPGA-initiated transfers
had similar performance for larger message sizes. As expected, host-initiated reads per-
formed abysmally.

The second experiment examined the impact of the FPGA’s clock rate on data transfer per-
formance. In this experiment, we measured the amount of time required for an FPGA to
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(a) (b)

Figure 5.2. (a) Read/Write performance for host-initiated and
FPGA-initiated data transfers. (b) FPGA write performance for
different FPGA clock speeds.

write different length messages to host memory. We then ran the benchmark at different
FPGA clock speeds. As Figure 5.2(b) illustrates, reducing the clock rate of the FPGA
decrease the rate at which the FPGA can write data to the host. This characteristic im-
plies that it is important for developers to optimize their FPGA designs to use as fast of a
clock as possible. While a design with a slower clock rate might be capable of performing
more work per clock cycle, doing so may have the negative side effect of throttling the
rate at which data can be exchanged between the CPU and FPGA, and thus limit overall
performance.

Application Examples

In order to observe low-level performance aspects of the XD1, we adapted four different
applications to utilize the XD1’s FPGAs as computational accelerators. In all of these
experiments, we assume the following:

• Single CPU/Single FPGA:While the XD1 has multiple compute resources, we fo-
cus on the situation where a host processor offloads a key operation to its local FPGA.

• Speedups are Relative to the XD1’s CPUs: While faster CPUs are available, we
report all speedups relative to the XD1’s 2.2 GHz AMD Opteron processors. This
choice creates a level playing field for benchmarks.
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• Single-Precision Floating Point:Because our XD1 is only equipped with mid-sized
(V2P50) FPGAs, we decided to implement all four algorithms using single-precision
floating-point computations. This choice enabled us to consider larger computational
kernels than would be possible if we utilized double-precision arithmetic. Addition-
ally, an analysis of the applications we selected revealed that only one application
(STIFF) truly suffered from utilizing reduced precision.

• Transfers Times Included in Overhead:For fairness to application developers, we
perform all FPGA timings from the perspective of the software application. This
viewpoint means that the time required to exchange data with the FPGA is included
in the amount of time required for the FPGA to perform the work.

• Transfer Times Include Ejection: The 1.1 release of the XD1’s software has a
limited amount of memory for hosting data that is ejected by the FPGA. We include
the extra step of transferring data from this memory to application memory (i.e.,
1-copy) in the timing measurements in this chapter.

• FPGA Build Tools: In this work we utilize Xilinx’s ISE 6.3 tool chain to build FPGA
hardware. This tool chain invokes the Xilinx Synthesis Tool (XST) to perform front-
end synthesis. While XST produces lower-quality results than other synthesis tools,
it is widely available and has proved to be stable enough for our needs.

The four computational kernels that we have adapted to the XD1’s FPGA hardware are the
following: k-Nearest Neighbors (kNN), Stiffness Matrix generation (STIFF), Ray-Triangle
Intersection (RTI), and Isosurfacing (ISO).
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k-Nearest Neighbors (kNN)

In many pattern-matching and machine-learning applications it is necessary to categorize
an input vector based on its similarities to different training vectors that have already been
classified. One approach to performing this work is to apply the k-nearest neighbors (kNN)
algorithm, which (1) computes the Euclidean distance between the input vector and each
training vector, and then (2) locates the k training vectors that have the smallest distances
to the input vector. Pseudo-code for this algorithm is presented in Figure 5.3.

0 0 : f o r ( i = 0 ; i<NUM TRAINING VECTORS−1; i ++ ) {
0 1 : sum = 0
0 2 : f o r ( j =0; j<NUM TERMS−1; j ++ ) {
0 3 : d i f f = i n p u t [ j ] − t r a i n i n g v e c t o r [ i ] [ j ]
0 4 : sum = sum + d i f f∗ d i f f
0 5 : }
06 :
0 7 : i f ( sum < b e s t r e s u l t s [ k−1 ] ) {
0 8 : s t o r e i n s o r t e d l i s t ( b e s t r e s u l t s , sum )
0 9 : }
1 0 : }
1 1 : re turn b e s t r e s u l t s

Figure 5.3. The pseudo-code for the kNN algorithm.

While kNN produces high-quality results, researchers must often resort to inferior algo-
rithms because kNN is an expensive operation to perform on large-scale data sets. Real-
world problems often employ millions of training vectors with dozens of terms. As such,
kNN can have a sizable runtime because it must compute the distance from every input
vector to every training vector. Based on our analysis of the kNN algorithm, it is clear
there are both opportunities and challenges involved in constructing a hardware accelerator
for this algorithm.

Opportunities:

• Many Parallel Operations: The kNN operation performs a simple operation on
a large number of inputs. Therefore it is possible to perform a sizable number of
computations for this algorithm in parallel.

• Static Training Data: It is expected that the training data will be held constant for
a long period of time while checking many different input vectors against the data.
This characteristic enables us to store training data in memory close to the FPGA and
reuse the data for multiple operations.

• Few Inputs/Outputs: Once the FPGA accelerator board is loaded with training data,
the user only needs to inject a single input vector to begin useful work. Likewise, the
algorithm only generates k results for each input vector. As such, the overhead of
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transferring data between the FPGA and host CPU is minimal compared to the work
that is performed at the FPGA.

Challenges:

• Data Throughput: Performance in kNN is largely dependent on the rate at which
training data can be brought into the system. It is imperative that the FPGA fetch
as many data values from memory as possible (i.e., minimize memory stalls) and
operate at as high of a clock rate as possible.

• Adaptability: Machine-learning/pattern-matching users expect that a kNN kernel
will be capable of handling a variety of parameters (e.g., the number of terms in a
vector or the number of vectors in the training set). Therefore, it is beneficial if an
accelerator can support multiple parameters without requiring that the hardware be
recompiled.

• Pipeline Latency: The kNN performs a running summation, which is nontrivial
to implement in systems that utilize pipelined adders. Therefore it is necessary to
consider techniques by which processing dependencies can be removed.

Our goal in adapting kNN to a hardware implementation was to store as many training
vectors as possible in close proximity to an FPGA, and employ an array of distance-
computation processing elements (PEs) in the FPGA to exploit the natural concurrency
of the algorithm. In order to maximize memory bandwidth, each PE operates in a stream-
ing manner, processing each term in a training vector sequentially. We assume that all
training vectors are the same length (specified by software at run time) and that individual
vector terms are single-precision floating-point values (32-bits). Based on the fact that the
XD1’s FPGA can fetch 256-bits of data per clock cycle from the on-card QDR2 memory
banks, it is possible to place eight PEs in parallel in the FPGA design.

A high-level representation of the hardware is depicted in Figure 5.4. As this illustration
indicates, each PE is comprised of three floating-point units, a k-value sorting unit, and a
feedback buffer for maintaining intermediate results. All PEs operate in lock step. Each
PE computes the difference between an input vector term and a training vector term, and
then adds the square of the difference to a running sum. The sorting unit maintains a list of
the k smallest distances observed for an input vector (as well as the corresponding training
vector identifiers). Once the PEs have stepped through all training vectors, the k results
of each PE are merged using a final k-value sorting unit. The k best best results are then
transferred to the host’s memory as output.

The fact that the floating-point units are pipelined forced us to rearrange the flow of ex-
ecution in the PEs in order to implement the running summation in an efficient manner.
Rather than process all of the terms of a vector before moving on to the next vector, we
decided to process a term for all vectors before moving on to the next term. While this
approach requires that the intermediate results for each vector must be buffered in the PE,
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Figure 5.4. Architecture of the kNN Hardware Accelerator

the running-sum dependency is removed and the PE can stream through input values very
efficiently. The PEs are also equipped with multi-pass functionality to handle the case
where the number of training vectors stored in the PE’s section of QDR2 memory exceeds
the number of intermediate values that can be buffered in the PE. The modified version of
the algorithm is presented in Figure 5.5.

0 0 : f o r ( i = 0 ; i<NUM TERMS−1; i ++ ) {
01 :
0 2 : f o r ( j = 0 ; j<NUM TRAINING VECTORSIN SET−1; j ++){
0 3 : d i f f = i n p u t [ i ] − t r a i n i n g v e c t o r [ i ] [ j ]
0 4 : sums [ j ] = sums [ j ] + d i f f∗ d i f f
0 5 : }
0 6 : }
07 :
0 8 : s o r t ( sums )
0 9 : re turn sums [ 0 : k−1]

Figure 5.5. The pseudo-code for the modified kNN algorithm.

A number of experiments were conducted on the XD1 to observe the performance of the
hardware accelerator for various scenarios. In these tests we adjusted the number of terms
in a vector and the number of training vectors loaded in the FPGA’s on-card memory. We
then measured the amount of time required for an application to perform the kNN operation
first in software and then using the hardware accelerator. The results are reported in terms
of speedup when utilizing the hardware accelerator.

The results of the experiments are presented in Figure 5.6 for vectors with 2-60 terms.
These particular experiments yielded hardware speedups ranging from 1.5x to 6.5x. In
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Figure 5.6. Performance gain of FPGA accelerator for kNN.

terms of training vector data set sizes, performance improved as the number of training vec-
tors stored in on-card memory was increased. This effect can be attributed to the fact that
CPU-FPGA communication overhead is less of a factor in larger jobs than it is in smaller
jobs. In terms of vector length, the best performance was observed when the algorithm
utilized vectors with 8-12 terms. Increasing the number of terms degrades performance for
two reasons. First, the FPGA’s on-card memory has a fixed capacity for housing training
data. Therefore, increasing the number of terms in the vectors decreases the number of
vectors that can be stored close to the FPGA, which in turn limits the size of the job that
can be performed without reloading the memory. Second, the current implementation of
the kNN accelerator requires a few idles cycles to take place between the processing of
each term. Thus, increasing the number of terms increases the total number of idle cycles
that take place in a job. These idle cycles present an opportunity for improvement in future
work.

Additional experiments were conducted to assess the complexity of converting the kNN
architecture to utilize data formats other than 32-bit floating-point values. We replaced
the floating-point units with 32-bit integer pipelined units and recompiled the design. In
addition to requiring approximately half the resources of the floating-point design, the in-
teger design achieved speedups of up to 8x over software. Based on these characteristics,
a second row of PEs could be added to the design to process a second input vector in par-
allel with the first. While this approach would require the user to submit multiple jobs at a
time, it is conceivable that performance would scale with the number of rows that could be
instantiated in the FPGA.
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Stiffness Matrix (STIFF)

In many finite element (FE) applications, it is necessary to compute the stiffness matrix for
each node in a mesh for every time step in the simulation. A high-level representation of an
algorithm that can be used to generate the stiffness matrix for a single node is presented in
Figure 5.7. While this algorithm is a straightforward computation, the fact that a simulation
may operate for tens of thousands of time steps and utilize meshes with millions of nodes
can result in a significant workload for the application. Therefore, it is beneficial to consider
techniques by which this work can be performed more efficiently.

An examination of the stiffness matrix computation reveals that there are both opportunities
and challenges to be considered when implementing the algorithm in an FPGA accelerator.

Opportunities:

• Many Parallel Operations: The algorithm employs a large number of independent
operations that can be executed in parallel. This characteristic provides the hardware
designer with many possibilities for optimization.

• Meta-Operations: The algorithm performs the same set of computations on a vari-
ety of data inputs. As such it is possible to group a set of computations together as a
“meta-operation” and then reuse a set of floating-point units over time to implement
different parts of the algorithm.

• Few Inputs/Outputs: While the algorithm maintains a fair amount of data internally,
there are few input and output data values. This characteristic is desirable because
it minimizes the amount of data that is exchanged between the host CPU and the
FPGA.

• Many Constants: The algorithm utilizes a large number of data constants through-
out the algorithm. These constants can be stored efficiently in on-chip ROMs that
are placed in close proximity to the floating-point units. These simplifications to the
hardware data path can result in improvements to the hardware’s overall clock rate.

Challenges:

• Many Operations: The sheer number of operations performed in the algorithm
makes it impractical to instantiate a unique floating-point unit for every computa-
tion in the algorithm. Therefore, we must consider design techniques that reuse a
fixed number of floating-point units to perform different operations over time.

• Multiple Sections: At a course-grained level the algorithm has two computational
sections that are performed sequentially. While we can pipeline the work through the
two sections, the second section has more operations and thus a different processing
rate than the first.
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0 0 : dNdr [ 4 ] [ 3 ] [ 3 ] = d N d r c o n s t a n t s / / C o n s t a n t s
0 1 : dNds [ 4 ] [ 3 ] [ 3 ] = d N d s c o n s t a n t s / / C o n s t a n t s
0 2 : NU[ 2 ] = NU cons tan ts / / M a t e r i a l p r o p e r t i e s c o n s t a n t s
0 3 : OM[ 2 ] = OM constants / / M a t e r i a l p r o p e r t i e s c o n s t a n t s
0 4 : qw [ 3 ] = QW constants / / M a t e r i a l p r o p e r t i e s c o n s t a n t s
0 5 : d e t J [ 3 ] [ 3 ] = z e r o s ( 3 , 3 ) / / De te rm inan t f o r each J a c o b i a n m a t r i x
0 6 : J [ 3 ] [ 3 ] [ 2 ] [ 2 ] = z e r o s ( 3 , 3 , 2 , 2 ) / / 9 J a c o b i a n m a t r i c e s
0 7 : G [ 8 ] [ 3 ] [ 3 ] = z e r o s ( 8 , 3 , 3 ) / / 8 Gloms m a t r i c e s
0 8 : k [ 8 ] [ 8 ] = z e r o s ( 8 , 8 ) / / 1 r e s u l t m a t r i x
09 :
1 0 : / / I n i t i a l i z e t h e 9 J a c o b i a n m a t r i c e s ( one f o r each q u a d r a t u r e p o i n t )
1 1 : f o r ( a =0; a<3; a ++)
1 2 : f o r ( b =0; b<3;b ++) {
13 :
1 4 : f o r ( p =0; p<2;p++)
1 5 : f o r ( q =0; q<2;q++)
1 6 : f o r ( i =0; i <4; i ++)
1 7 : i f ( p ==0) J [ a ] [ b ] [ p ] [ q ] + = dNdr [ i ] [ a ] [ b ] ∗ coo rds [ i ] [ q ] ;
1 8 : e l s e J [ a ] [ b ] [ p ] [ q ] + = dNds [ i ] [ a ] [ b ] ∗ coo rds [ i ] [ q ] ;
19 :
2 0 : d e t J [ a ] [ b ] = c r o s sm u l t i p l y ( J [ a ] [ b ] ) ;
2 1 : }
22 :
2 3 : / / Compute Mat r i x Gloms
2 4 : f o r ( a =0; a<3; a ++)
2 5 : f o r ( b =0; b<3;b++)
2 6 : f o r ( i =0; i <8; i ++)
2 7 : G[ i ] [ a ] [ b ] = J [ index1 ]∗ dNdr [ index2 ] + J [ index3 ]∗ dNds [ index4 ] ;
28 :
2 9 : / / Compute S t i f f n e s s Mat r i x
3 0 : f o r ( a =0; a<3; a ++)
3 1 : f o r ( b =0; b<3;b++)
3 2 : f o r ( i =0; i <7; i ++)
3 3 : f o r ( j = i ; j <7; j ++)
3 4 : k [ i ] [ j ] + = G[ index1 ]∗G[ index2 ]∗NU[ index3 ] +
3 5 : G[ index4 ]∗G[ index5 ]∗OM[ index6 ]∗qw[ a ]∗qw[ b ] / d e t J [ a ] [ b ] ;
36 :
3 7 : / / Re tu rn k [ 0 : 7 ] [ 0 : 7 ]

Figure 5.7. Pseudo-code for the stiffness matrix computation at
a single mesh point. Matrix indices are omitted in this listing for
brevity.
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• Long Loops: The second section of the algorithm performs 36 meta-operations over
9 iterations. The large number of meta-operations in an iteration discourages simple
loop unrolling techniques.

• Feedback:The second section of the algorithm has a feedback loop that sums the re-
sult of each meta-operation with the previous iteration’s result. This feedback can be
challenging to implement efficiently given that the floating-point units are pipelined.

• Single-Use Operations:While most operations in the algorithm can be mapped to a
small set of meta-operators, the determinant computation (line 20) is only performed
once per Jacobian matrix. As such, it is likely that the hardware performing these
operations will be idle for many clock cycles in an iteration.

Multiple implementation strategies were considered for the FPGA design. Estimating that
only 50 floating-point units could be instantiated in the XD1’s V2P50 FPGA, we decided
that it would be impractical to unroll the loops or merge them into one continuous compu-
tational block. The availability of multiple computations that could be grouped into meta-
operations motivated us to consider techniques by which a set of hardware units could be
reused to perform a series of similar meta-operations. In particular we grouped the calcu-
lations into four meta-operations: the Jacobian (lines 17-18), the determinant (line 20), the
modification matrices (line 27), and the stiffness matrix (lines 34-35). We then partitioned
the design into a front-end unit and a back-end unit. While both units perform 9 iterations
per job, the front-end unit performs 8 operations per iteration while the back-end performs
36 operations3. As such, we constructed a hardware design that utilizes one front-end unit
and multiple back-end units to improve throughput, as depicted in Figure 5.8. Once the
front-end has processed a job, it passes the work on to the next available back-end. This
assignment is always sequential due to the deterministic nature of the operations. Based on
the workload, a balanced design has 4-5 back-end units.

A hardware accelerator design employing single-precision floating-point units was imple-
mented for the V2P50 FPGA on the Cray XD1. Through experimentation with the hard-
ware compilation tools we determined that the V2P50 has the capacity to house a design
with one front-end and five back-end units. The design tools reported that the hardware
was capable of operating at a maximum frequency of 190 MHz. This speed is the highest
of all four kernels that were constructed in this project. The high speed of the design can be
attributed to the fact that the large number of data constants used by the algorithm enabled
the hardware data path to be simplified.

A software library was constructed in order to allow applications to take advantage of the
STIFF hardware accelerator. This library provides communication mechanisms for ex-
changing data with the FPGA, as well as a software implementation of the algorithm for
comparison purposes. After basic experiments were performed to test the validity of the ac-
celerator, we optimized the software library to provide better communication performance

3While the output is an 8x8 matrix, the result data is in the form of an upper-triangle matrix. Thus, many
operations can be eliminated.
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Figure 5.8. Architecture of the STIFF Hardware Accelerator

with the FPGA. Specifically, we constructed a second function call for injecting a batch of
jobs at a time. This function copies all of the data for a batch of jobs to the FPGA and then
posts a single update to the FPGA’s control register for the work. This approach allows the
expensive notification operation (500 ns) to be amortized across multiple jobs and results
in better performance.

Performance measurements were conducted to observe the speedup of the accelerator when
compared to a software implementation of the algorithm. The performance measurements
captured the amount of time required by the end application to perform a large number of
stiffness computations. For the design with five back-ends, we observed that the STIFF
accelerator provided a 4x gain in performance over the software implementation. Utilizing
more than five back-ends with only a single front-end did not yield additional performance
gains.
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Ray-Triangle Intersection (RTI)

Photon mapping[19] is a global illumination technique employed in visualization to ren-
der high-quality images of three-dimensional scenes. Photon mapping applications inject
millions of photons of light into a scene and then track each photon’s path as it reflects
off objects in the scene. For each photon reflection the application must determine which
object a photon will collide with next and where the intersection takes place. This oper-
ation can be accomplished by (1) performing ray-triangle intersection (RTI) computations
between a photon and all of the triangles the photon can possibly collide with and then (2)
selecting the intersection point that is closest to the photon’s current location. Given the
sheer number of photons and objects in a scene, it is important for RTI computations to
take place as rapidly as possible.

0 0 : v e r t e x T0xyz , T0xyz , T2xyz / / T r i a n g l e V e r t i c e s
0 1 : v e r t e x PHOxyz , PHDxyz / / Photon O r i g i n and D i r e c t i o n
02 :
03 :
0 4 : S0xyz = T1xyz− T0xyz
0 5 : S1xyz = T2xyz− T0xyz
06 :
0 7 : C0xyz = CROSS PRODUCT ( PHDxyz , S1xyz )
0 8 : DET = DOT PRODUCT ( S0xyz , C0xyz )
09 :
1 0 : i f ( DET ! = 0 ) {
1 1 : INV D = 1 / DET
1 2 : S2xyz = PHOxyz− T0xyz
1 3 : U = DOT PRODUCT ( S2xyz , C0xyz )∗ INV D
14 :
1 5 : i f ( 0 . 0 < U < 1 . 0 ) {
1 6 : C1xyz = CROSS PRODUCT ( S2xyz , S0xyz )
1 7 : V = DOT PRODUCT ( PHDxyz , C1xyz )∗ INV D
18 :
1 9 : i f ( V > 0 ) AND ( U + V > 1 . 0 ) {
2 0 : T = DOT PRODUCT ( S1 , C1 )∗ INV D
2 1 : re turn HIT a t TUV
2 2 : }
2 3 : }
2 4 : }
2 5 : re turn NO HIT

Figure 5.9. Pseudo-code for the M̈oller-Trumbore Ray-Triangle
Intersection (RTI) Algorithm

The Möller-Trumbore[27] algorithm is a well-known method for efficiently performing the
RTI computation. A high-level representation of the algorithm is presented in Figure 5.9.
Given a ray and a triangle, the algorithm produces a TUV coordinate if an intersection
occurs, where T is the distance from the ray’s origin to the triangle and UV is the two-
dimensional offset of the intersection within the triangle. With the exclusion of one division
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operation (line 11), the algorithm only requires additions, multiplications, and comparison
operations.

Due to the fact that photon mapping applications can spend minutes to hours rendering a
single image, it is worthwhile to investigate how an FPGA accelerator could be utilized to
improve performance. In order to hide the overhead of exchanging data with an accelerator,
we assume that the photon mapping application operates on a bundle of photons at a time.
As presented in Figure 5.10, for each photon in the bundle, the accelerator must perform
an RTI operation with every triangle to locate the nearest triangle that is in the photon’s
path. In addition to a TUV intersection point, the accelerator identifies the triangle that
each photon collides with.

0 0 : f o r ( p = 0 ; p<NUM PHOTONS−1; p++){
01 :
0 2 : T b e s t = i n f i n i t y
03 :
0 4 : f o r ( i d = 0 ; i d<NUM TRIANGLES= 1 ; i d ++){
0 5 : ( i s h i t , T ,U,V ) = c o m p u t e r t i ( pho tons [ p ] , t r i a n g l e s [ i d ] )
0 6 : i f ( ( i s h i t ) and ( T < T b e s t ) ) {
0 7 : ( T b e s t , U bes t , V bes t ) = ( T ,U,V)
0 8 : I D b e s t = i d
0 9 : }
1 0 : }
1 1 : p h o t o n r e s u l t s [ p ] = ( I D b e s t , T b e s t , U bes t , V bes t )
1 2 : }

Figure 5.10. Pseudo-code for RTI Work in a Photon Mapping
Application.

Through an initial analysis of the algorithm, we determined that the opportunities and chal-
lenges for this work include the following.

Opportunities:

• Multiple Computations: The Möller-Trumbore algorithm performs a moderate num-
ber of floating-point operations in a predictable manner. As such, it is straightforward
to rearrange the algorithm into a form where it can be implemented as a continuous,
deep pipeline of operations.

• Static Scene Data:It is safe to assume that scene geometry changes infrequently
in the photon mapping application. Therefore, scene data can be loaded into the
FPGA’s on-card memory at the beginning of a new video frame and then utilized in
work involving many different bundles of photons.

• A Large Number of Jobs: The “light propagation” phase of a photon mapping algo-
rithm sends hundreds of thousands of rays (or more) into a scene, each of which may
interact with up to 20 or 50 surfaces. The resulting workload provides an opportunity
to hide data transfer overhead through batch processing.
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• Multiple Iterations per Job: A substantial number of RTI computations must be
performed for each job because each photon in a job must be interested with each
triangle in the job. This large volume of work provides us with opportunities to hide
the computational latency of the RTI pipeline and achieve higher utilization of the
floating-point units.

Challenges:

• High Resource Utilization: With over 50 floating-point operations, the RTI algo-
rithm requires at least a medium-sized FPGA in order to be possible. While the
XD1’s V2P50 is just large enough for the design, it is important to note that the
maximum clock rate for a design generally decreases as an FPGA reaches capacity.

• High Complexity: The use of a deep computational pipeline with a high utilization
rate implies that a large number of data values are in-flight at any given time. As such,
there is a significant amount of complexity associated with the hardware, which in
turn affects the development and debug time.

Based on these observations, we devised a strategy for implementing an FPGA accelerator
for photon mapping applications. Our goal was to implement the RTI as a deep pipeline of
floating-point units, and then provide wrapper hardware that minimizes the amount of time
the pipeline is idle. In terms of memory resources, we decided to house photon data in on-
chip memory and triangle data in external on-card memory. This decision was motivated
by the fact that a scene may be comprised of millions of triangles of data and that it is useful
to store as many triangles near the FPGA as possible. The downside of this choice is that
the XD1’s external memory is not wide enough to supply a triangle’s three vertices (288
bits) in a single fetch operation. Thus, in order to keep the pipeline busy, we had to reverse
the order of the loops in Figure 5.10. The new system fetches a triangle and then performs
the RTI computation between the triangle and all photons. A high-level representation of
the accelerator architecture that we constructed is presented in Figure 5.11.

At the heart of the accelerator is a deep pipeline of floating-point units that implement the
RTI computation. This pipeline is comprised of three sections. First, an intersect unit is
used to perform the vector computations required in the algorithm. This unit performs three
vector subtracts, two cross products, and four dot products for each RTI computation. In or-
der to minimize the number of pipeline stages in this unit, we defer the algorithm’s division
operation (line 11 in Figure 5.9) until the third section of the pipeline. Second, a compare
unit determines whether an intersection is better than a previously discovered result for the
photon in question. Because the intersect unit does not perform division, the compare unit
operates using a numerator-denominator representation of the numbers. Information about
the nearest intersection point for each photon is stored in a feedback buffer connected to
the comparison unit. Finally, in the third section of the pipeline, floating-point division
units are utilized to convert the numerator-denominator representations of the results to
their final TUV values.
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Figure 5.11.Architecture of the Ray-Triangle Intersection hard-
ware accelerator

The hardware wrapper around the RTI pipeline is designed to maximize the rate at which
work is issued to the pipeline. In terms of memory resources, photons are issued from an
internal memory bank while triangles are issued from external memory. Rather than imple-
ment the photon memory bank as a hardware FIFO queue, we opted for an open memory
interface controlled by the host application. When injecting a bundle of new photons into
the memory, the host application determines where the bundle should be written and then
provides a start and a stop address for the bundle to the FPGA. This approach simplifies
control hardware in the FPGA and allows for more flexibility in the host application. For
the triangle memory, we opted for a simple compression scheme that allows vertex coordi-
nates to be reused by different triangles. In this scheme the first three memory banks of the
FPGA’s on-card memory house vertex data, with XYZ data being striped across the three
banks. The remaining memory bank holds triangle definitions, where each of a triangle’s
three vertices is represented by an offset into the vertex memory. Based on the 16 MB
QDR2 capacity of our XD1, this system facilitates up to 1M unique vertices or up to 512K
triangles. The triangle memory interface is also double buffered to enable the next triangle
to be fetched from memory while the RTI pipeline processes the current triangle.

Application software was constructed to validate the accuracy and benchmark the speed
of the accelerator. This software loads a large number of triangles into the FPGA’s QDR2
memory and then measures the amount of time required to process jobs with different
numbers of photons and triangles. Results are then compared to those generated by a
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software module that implements the same functionality. In our benchmarks, we allowed
the number of photons in a job to range from 4 to 1023, and the number of triangles to
range from 8 to 4096. Two different views of the speedup observed in the same experiment
are presented in Figure 5.12.

(a) (b)

Figure 5.12. Speedup of the RTI Hardware Accelerator over
Software

From this experiment we first observe that the speedup of the hardware accelerator im-
proved when more photons and/or triangles are processed in a job. From (a) we observe
that for a fixed number of photons, the majority of the speedup can be obtained using only
a small number of triangles (approximately 32-64). This property is beneficial because it
allows software developers to break jobs into smaller regions of geometry and still obtain a
substantial performance gain. In terms of photons, we observe from (b) that the majority of
speedup for a fixed number of triangles is obtained when jobs with more than 64 photons
are utilized. This pivot point can be attributed to the depth of the compare section of the
pipeline (i.e., the feedback buffer requires that the first few results of the first iteration be
written before the second iteration begins). The fact that substantial performance gains are
possible with a small number of photons is important, because it implies that host soft-
ware does not have to gather large bundles of photons together in order to make use of the
accelerator.

In additional experiments we increased the maximum number of photons in a bundle to
4095 and were able to obtain a 12x speedup over software. While additional optimizations
could be applied, we believe that in order to obtain more performance, it is necessary to
move to a larger capacity FPGA that could house multiple instances of the photon mapping
accelerator.
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Isosurfacing (ISO)

Many scientific applications generate a large volume of output data for every time step
in the simulation. In order to better explore these results, researchers often utilize post-
processing visualization techniques that highlight relevant features in the data and represent
regions of interest in a more insightful, graphical form. One such visualization technique
that is frequently used to interrogate a volume of data is isosurfacing.

Isosurfacing algorithms approximate the set of all points in a region of space where some
field of interest is a constant. For example, isosurfaces of computed tomography (CT) or
magnetic resonance imaging (MRI) scans (Figure 5.13) approximate surfaces of constant
density (CT) or magnetic dipole alignment (MRI). Typically, isosurfacing algorithms ap-
proximate this set of points with a set of triangles.

(a) (b)

Figure 5.13. In this 512x512x210 data set, we obtained (a) ex-
terior and (b) interior views of a hand by isosurfacing with differ-
ent threshold values.MRI data courtesy of Serge VAN SINT JAN,
Ph.D., Associate Professor, Université Libre de Bruxelles.

Medical images and many physical simulations (especially computational fluid dynamics)
store fields over a regular, three-dimensional grid of points. The grid of points can also be
treated as a grid of rectangular prisms (or voxels), with each hexahedral prism defined by 8
adjacent points. Isosurfacing can be a time consuming operation when applied to large data
sets because it is necessary to threshold and analyze every voxel in the grid. Additionally,
a single data set may yield tens of millions of triangles of isosurface geometry. As such we
have constructed an FPGA computational kernel that performs isosurfacing in a manner
that is similar to the well-known Marching Cubes[24] algorithm.
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Marching Cubes steps through every 8-point cube of data in the input volume and analyzes
each cube individually to determine if and where the isosurface intersects the cube. An
intersection occurs when a cube’s points are neither all above nor all below the threshold
value. When an intersection occurs, the algorithm locates the points on the cube’s edges
where the crossings take place and then generates a series of triangles within the cube
that best approximate the isosurface within the cube. The opportunities and challenges in
adapting this algorithm include the following:

Opportunities:

• Many Parallel Operations: The algorithm performs the same operation on a large
number of independent data cubes. Therefore, there is a large amount of parallelism
that can be exploited in the algorithm.

• Minimal Floating Point: The majority of the work performed in the algorithm can
be executed with integer operations (e.g., thresholding and portions of the triangle
vertex generation). This trait enables us to consider using a large number of slim
processing elements in parallel.

• Two Sections:The algorithm can be divided into a front-end section that performs
thresholding and a back-end section that generates triangles. By placing sufficient
buffering between the two halves, it is possible for the (faster) front-end section to
be decoupled from the (slower) back-end section.

Challenges:

• Input Data Structure: Before any hardware can be designed, it is necessary to de-
termine the shape of the input data that will be passed to the FPGA. The XD1’s QDR2
memory is sufficient for housing a full, three-dimensional data set for moderately-
sized applications. However, doing so may not be beneficial, since each data point is
accessed at most 8 different times by the algorithm. A more attractive approach is to
break the volume into smaller, more manageable slices.

• Large State: Each cube that is processed by the algorithm has a sizable amount of
state information that must be retained until the cube’s execution is complete (e.g.,
the cube’s 8 data points and XYZ coordinates are used in the final triangle generation
phase). The sheer size of this state information can create a strain on FPGA memory
resources when a large number of PEs are instantiated. Therefore, it is necessary to
consider techniques by which state information is represented in a compact manner.

• Synchronization: While having a large number of PEs is beneficial for performance,
the FPGA design must provide the proper arbitration mechanisms to allow the PEs
to share common resources such as the back-end triangle generation unit.

Our first major decision in adapting the isosurfacing algorithm to hardware involved se-
lecting the manner in which input data is processed. In order to provide better flexibility
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and more possibilities for overlapping computation with communication, we decided to
have the FPGA process an MxNx2 sheet of data at a time as opposed to working on the
entire cube of data. This data set structure is beneficial for multiple reasons. First, it allows
larger dimension problems to be processed because the entire data set does not need to fit
in memory at the same time. Second, the host can load the next sheet of data into memory
while the FPGA is processing the previous sheet. Finally, the control logic for the design
is simplified since the FPGA has one less dimension to traverse while stepping through the
data set. As illustrated in Figure 5.14, the FPGA breaks the MxNx2 sheet into K PxNx2,
where P is the number of PEs available in the array. N is currently set at a maximum of
1024 to simplify buffering requirements, but could easily be increased if needed.

Figure 5.14.Rather than processing an entire cube at a time, the
isosurfacing accelerator processes slices of data.

An isosurfacing hardware accelerator was constructed for the XD1’s FPGAs. The hardware
design utilizes an array of PEs to perform the front-end threshold operations and a back-end
triangle generation unit to produce isosurface geometry. A high-level representation of the
architecture is illustrated in Figure 5.15.

The number of PEs in the front-end portion of the array is equivalent to the width of the
memory interface divided by the width of a data sample. Based on the observation that
most scientific instruments that capture volumetric data generate low-precision samples,
we optimized the design to utilize 16-bit integer data values. This assumption enables 16
data values to be fetched from the XD1’s 256-bit wide QDR2 memory each clock cycle.
Adjacent samples are striped across the QDR2 memory banks in order to allow data for 15
cubes to be fetched each clock cycle. After the first column of cubes for a slice is fetched,
a new column of cube data is ready for processing every other clock cycle. In order for two
adjacent slices to be processed back-to-back (e.g., slices 1 and 2 in Figure 5.14), the last
row of data is buffered within the FPGA. This extra row of data enables 16 cube rows to
be processed at a time after the first slice is completed. Thus, the front-end unit employs a
total of 16 PEs.

A buffering system is utilized between the front and back ends of the design in order to
allow the PE units to operate independent of the back end. Once a PE locates a cube that
intersects the isosurface, it stores information about the cube in a local FIFO. In addition to
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Figure 5.15.Architecture of the isosurfacing accelerator.

being 1024 entries deep, each FIFO is wide enough to store all of a cube’s state information
(over 100-bits) in a single clock cycle. This bandwidth allows back-pressure control in the
front-end to be managed in a simple manner: once any FIFO in the array nears capacity,
an alert is issued to the job control unit to stall the issuing of new cubes until the FIFO has
enough space to house additional results. Work is issued to the back-end unit through a
dispatch unit. This unit polls the PE FIFOs and issues work in a prioritized, round-robin
manner. Due to the large number of PEs in the front end, the dispatch unit utilizes a double-
buffering technique that reduces the latency in locating new work to issue to the back end.

The back-end section of the architecture transforms state information about a cube into
triangle geometry that approximates the isosurface within the cube. In order to accom-
plish this task, a threshold-to-edges unit utilizes a 256-entry lookup table that specifies the
number and orientation of the triangles that should be generated to represent the isosurface
for a particular cube’s conditions. Based on the lookup table, the threshold-to-edges unit
can issue up to five different triangles as output. Three edge-to-vertex units are utilized
in parallel to generate vertex co-ordinates, one triangle per clock. This operation requires
multiple integer-to-floating-point conversion operations and two floating-point operations
per vertex. The end results are stored in a FIFO and then transferred to host memory using
a customized DMA engine.

A number of experiments were conducted on the Cray XD1 to observe the performance
characteristics of the isosurfacing (ISO) hardware. In our first experiment, we supplied a
volume of random input data to the system and compared the performance to an application
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that performed the work entirely in software. In these tests we consistently observed that
the hardware accelerator provided a 4x speedup over software for data dimensions up to
512x512x512. However, it should be noted that random input data is effectively the worst-
case scenario for isosurface applications, because the random data does not contain smooth,
continuous surfaces and therefore a substantial amount of geometry will be generated. In
contrast, we also conducted experiments with null data sets that yielded no isosurface ge-
ometry. For the FPGA accelerator, the null data set is the best case because the front-end
hardware can rapidly parse through the data without having to be delayed by the back-end
triangle generation unit. In fact, we observed performance gains of up to 80x over software
in these experiments. Performance for real data sets naturally lies somewhere in between.
Our next step in this work is to focus on increasing the clock speed of the design and
examine the performance of the system with scientific data sets.

Application Summary

The characteristics for each of the hardware accelerator designs is summarized in Table 5.1.

Table 5.1.Characteristics of the four XD1 accelerator designs
Design kNN STIFF RTI ISO

Speedup 8x 4x 12x 4x-80x
PEs 8 5 1 16

Clock Rate 164 MHz 190 MHz 179 MHz 140 MHz
External Memory Training - Triangle Input

Purpose Vectors Data Data
FP ADD Units 16 12 24 3
FP MUL Units 8 34 26 0
FP DIV Units 0 1 3 3
Total FP Units 24 47 53 6

Slices 19,366 17,331 20,659 18,329
(% of V2P50) (82%) (73%) (87%) (77%)

RAMB16s 40 76 92 199
(% of V2P50) (17%) (32%) (39%) (85%)
MULT18x18s 32 148 104 33
(% of V2P50) (13%) (63%) (14%) (14%)
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XD1 Observations

Our work with the XD1 has provided us with a substantial amount of insight into the low-
level details of RC in current-generation systems. In regards to the XD1, we make the
following observations:

• Overall Performance Wins: Even though our XD1 system was only equipped with
mid-sized FPGAs, we were still able to achieve a performance gain in all four ap-
plications. While larger capacity FPGAs make it easier to exploit parallelism in an
algorithm, it is encouraging to see that speedups are possible with smaller (and lower
costing) FPGAs.

• Reuse vs. Deep Pipelines:While the STIFF and RTI designs utilize roughly the
same number of floating-point units, the RTI design resulted in more of a perfor-
mance win, even though it operates at a lower clock rate. As this case implies, per-
formance is based on more than just the number floating-point units and the clock
speed of a design. The STIFF design is an underachiever because it reuses floating-
point units to perform different computations and individual units are not utilized
100% of the time. In contrast, the floating-point units in the RTI design are arranged
in a deep pipeline that results in extremely high utilization once data begins to flow.
In addition to performance advantages, deep pipelines are more straightforward to
implement and require less control logic.

• Simple Data Transfer APIs: In our initial work, we cautiously constructed FIFO
queues for managing data transfers into and out of the FPGA. While queuing is nec-
essary for controlling the flow of data through the accelerator, we later moved to
simpler implementations that required all buffer reservations for a job be completed
before the job could be issued to the FPGA. This optimization simplifies the amount
of bookkeeping that the FPGA must perform and reduces the amount of state infor-
mation that must be shared between the CPU and FPGA.

• Host-CPU Bandwidth Limits Performance: The XD1’s architecture provides sub-
stantial bandwidth between CPU and FPGA resources4. However, as we observed in
the ISO design it is still possible to saturate this connection and incur performance
penalties. Designers must anticipate these bottlenecks and partition their algorithms
into software and hardware components accordingly.

• Exploiting On-Card Memory Bandwidth: The kNN and ISO designs both took
advantage of the fact that the XD1 provides wide, on-card memory for FPGA ap-
plications. Because this memory can provide more bandwidth than the host CPU
can obtain from main memory, it is possible for computational kernels to exhibit
significant wins when on-card memory is used wisely. The challenge in this work
is finding an application with the right memory access patterns, and implementing
hardware that is capable of issuing memory transactions every clock cycle.

4In fact, the only commercial system we know of with higher bandwidth is the SRC-7.
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• Lengthy Development Time: Each of these designs required between three weeks
(STIFF) and three months (RTI) to develop and debug. While we built in-house tools
to automate portions of the work5, the entire development process is lengthy and
complex. While we expected hardware development to be time consuming, we found
that an unusually large portion of our development time involved writing the interface
software for the host applications and adjusting it to achieve acceptable performance.
In hindsight, we should have anticipated this overhead, as debugging the software
interface is where a design first comes to life and all unexpected problems first start
to materialize.

• XD1 as a Research Vehicle:In polite terms, the XD1 was a fascinating research
vehicle, but alas, a far cry from a production-quality ride. As we expected, the XD1
gave us a flexible platform for low-level experiments that would simply not be possi-
ble in other systems. That said, our XD1 exhibited multiple hardware failures (e.g.,
multiple cooked hard drives and occasional overheating in the FPGAs) and many
software problems (e.g., lost home directories). If it were not for the dedication of
the original XD1 development team (OctigaBay) we would have been lost in Cray’s
antiquated, coin-operated bureaucracy.

Earlier this year Cray announced that it was discontinuing the XD1 product line. While
some of the authors of this report were unmoved by this news, the XD1’s demise is another
example of a computer industry truism: well-thought out architectures do not always lead
to profitable business ventures. As such, we feel it is important to reiterate the importance
of supporting commercial efforts that are based on open standards and provide open source
code.

5For example, we built a tool to analyze an algorithm’s data flow graph (DFG) and generate VHDL
hardware for the pipeline of operations.
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Chapter 6

System Simulation

One of the challenges with FPGA based application acceleration is the issue of system
architecture. Two things are clear: FPGAs will be getting much faster over the next few
years, and FPGAs will still have to be complemented by a conventional microprocessor
to support general purpose applications. The coupling between the FPGA and the con-
ventional microprocessor will be a key issue for the success of these systems. To explore
this issue, we considered an approach proposed by many building accelerator based sys-
tems: intercepting common library calls (e.g. BLAS and FFT calls) and executing them on
the accelerator. We focused on the DGEMM and FFT calls in the way that the scientific
applications in use at Sandia currently use those calls: a streaming series of small calls.

Motivation and Methodology

There has been a recent surge in work on new system architectures supporting FPGAs (and
accelerators in general). Each system has different implications for the aggregate band-
width and latency of the connection to the processor (Table 6.11). While a large body of
work has explored thepotentialof these systems for scientific computing, little work has
discussed the context of real applications. Research tends to explore the power of FPGAs
to address large dense matrix algorithms (DGEMMs) and large FFTs, but such work sel-
dom comments on any applications that actually use such operations (mostly because such
applications are rare). More importantly, few analyses have looked at the salient properties
of the architectures to determine their relative importance.

Motivating Applications

Generally speaking, scientific applications do not leverage large dense matrix operations.
Indeed, we know of no supercomputer applications at Sandia that leverage them. Small
dense matrix operations are a different story. For example, a large number of small, dou-
ble precision, complex 1D Fast Fourier Transforms (FFTs) is used in parallel molecular

1HyperTransport (HT) can achieve over twice the listed rate, but it is constrained by FPGA I/O capabili-
ties.
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Table 6.1.Typical system parameters
System Type Latency Bandwidth

PCI-X 1000 ns 1000 MB/s
PCI-Express 8X 800 ns 3.6 GB/s

HyperTransport (HT) 250 ns 3.2 GB/s
Memory 250 ns 3.6 GB/s

dynamics codes (e.g., LAMMPS[29, 30]) as part of a distributed 3D FFT. The typical ap-
proach to a distributed 3D FFT is to perform three iterations ofN2 FFTs of sizeN with data
transpositions between the iterations. The typical size of a call is on the order of 128 to
256 andN2 consecutive, independent calls to the function are made. Similarly, forecasting
codes can use thousands of small (size 256 to 1500), consecutive, independent 1D FFT
calls[43]. FFTs are a significant, although not dominant, contributor to overall run-time for
these applications.

Another example is the dense matrix multiply operation (DGEMM). While none of San-
dia’s applications use DGEMM operations for large operations (dimensions of hundreds or
more), many of them do small, dense, double precisions matrix multiplies. For example,
MPQC[18] is a quantum chemistry code that uses thousands of small, independent ma-
trix multiplies ranging from 15× 15 to 50× 50. Similar patterns occur in sparse matrix
multiplies that are used in Mondo SCF (another quantum chemistry code). Finally, modern
solver techniques are moving to locally dense, globally sparse matrices with multiple right-
hand sides. This also leads to a large number of independent DGEMM operations that tend
to be approximately 16×16. It is anticipated that the DGEMM calls will become as much
as 90% of the execution time as other aspects of the codes are tuned.

Methodology

This effort used two hardware platforms and a system level simulator to run the same
benchmarks. The first hardware platform was the Cray XD1, which was used as both the
FPGA platform and as a processor platform to measure the performance of the Opteron.
The second hardware platform was a Pentium-4 Xeon workstation that was used as an
example of thebest availableprocessor performance, since the Pentium-4 is known to
have a higher peak floating-point rate on dense matrix operations than the Opteron.

Cray XD1

Figure 6.1 depicts an XD1 compute blade containing two AMD Opteron processors. One
CPU connects directly to a network interface (NI) chip using a HyperTransport (HT) link.
This NI uses a Xilinx Virtex2Pro FPGA that limits the CPU to network interface link to
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Figure 6.1. The XD1 architecture

1.6 GB/s per direction (1.4 GB/s after overhead). The user-programmable FPGA is on
an expansion board connected to an HT interface on the second processor. As Figure 6.1
illustrates, the user FPGA is connected to a second NI through a simplified version of HT.
This interface enables the FPGA to read and write the hosts memory, as well as respond to
memory requests issued by the host processor. The XD1 utilized for this work is populated
with Virtex2Pro50-7 expansion boards and Opteron 248 processors, which are clocked at
2.2GHz and have a peak of 4.4 GFLOPs.

The FPGA design flow used Xilinx’s ISE 6.3.03 tool chain including the Xilinx Synthesis
Tool (XST) for VHDL synthesis. The XD1 system runs the 1.1 release of Cray’s system
software with a modified Linux 2.4.21 kernel. The 1.1 release of the XD1 system software
can only pin one 2MB block of contiguous host memory for sharing data with the FPGA.
This typically requires a data copy, but the more recent 1.3 release of XD1 system software
uses the Graphics Address Resolution Table (GART) to address up to 1 GB of host memory
from the FPGA and eliminates the need for a copy. Our tests emulate this behavior by not
performing the final copy in the 1.1 release.

Pentium-4 Xeon Workstation

A Pentium-4 Xeon workstation was used as one of the processor baselines for comparison.
The workstation has two 3.2 GHz Pentium-4 Xeon processors with EM64T technology. It
is equipped with 8 GB of RAM and is running the RedHat Enterprise 4 WS Linux distri-
bution. The compiler used was GCC 3.4.5, but the compiler only compiled the outer loop.
Matrix operations were measured using FFTW version 3.1[8] and the Intel Math Kernel
Library (MKL) version 8.1. FFTW was faster for the FFT portion of the test, and so it was
reported in the results section.
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c h o o s e o p e r a t i o n s i z e ( ) ;
b u f f e r = a l l o c a t e b u f f e r ( ) ;
b e g i n t i m e r ( ) ;
f o r ( i = 0 ; i < N ; i ++)

do op ( b u f f e r ) ;
e n d t i m e r ( ) ;

c h o o s e o p e r a t i o n s i z e ( ) ;
f o r ( i = 0 ; i < N ; i ++)

b u f f e r [ i ] = a l l o c a t e b u f f e r ( ) ;
b e g i n t i m e r ( ) ;
f o r ( i = 0 ; i < N ; i ++)

do op ( b u f f e r [ i ] ) ;
e n d t i m e r ( ) ;

(a) (b)

Figure 6.2. The traditional (a) and modified (b) benchmarks

Structural Simulation Toolkit

To explore configurations beyond the XD1, we used the Structural Simulation Toolkit (SST).
The Structural Simulation Toolkit is built around Enkidu, a hybrid simulation framework
that optimizes for the common case in architectural simulation by providing low-overhead
synchronous time-stepping to handle most functionality. For less frequent communication
between components, an asynchronous event mechanism is provided. SST integrates the
SimpleScalar (v3.0) toolkit’s sim-out-order processor model[3] to model conventional pro-
cessors. For these experiments, an execution-based front end supporting PowerPC Mach-O
binaries was used.

Benchmarks

Two benchmarks were used to test these concepts and provide a comparison point against
traditional microprocessors. These simple benchmarks were designed to capture the way
applications work; thus, they differ slightly from a traditional benchmark. A comparison
is shown in Figure 6.2 — the difference is subtle, but critical. Where a typical benchmark
does a large number of iterations over a single buffer, real applications tend to do a large
number of iterations overdifferentbuffers. Thus, the benchmarks reflect that.

Approach

Virtually every major HPC system shipped today requires standard libraries to be available
for the Basic Linear Algebra Subroutines (BLAS) and FFT. Some vendors have proposed
using hardware accelerators to intercept these calls and, thus, provide improved perfor-
mance. The problem, however, is in the traditional semantics of a blocking subroutine call.
Contrast the examples in Figure 6.3. The blocking calls are perfectly suitable for either
execution on a host microprocessor or for performing large routines on a compute accel-
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c h o o s e o p e r a t i o n s i z e ( ) ;
f o r ( i = 0 ; i < N ; i ++)

b u f f e r [ i ] = a l l o c a t e b u f f e r ( ) ;
f o r ( i = 0 ; i < N ; i ++)

do op ( b u f f e r [ i ] ) ;

c h o o s e o p e r a t i o n s i z e ( ) ;
f o r ( i = 0 ; i < N ; i ++)

b u f f e r [ i ] = a l l o c a t e b u f f e r ( ) ;
f o r ( i = 0 ; i < N ; i ++)

s t a r t o p ( b u f f e r [ i ] , r e q u e s t [ i ] ) ;
w a i t a l l ( r e q u e s t , s t a t u s ) ;

(a) (b)

Figure 6.3. (a)Blocking vs.(b)Non-blocking approaches
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Figure 6.4. Timeline for (a) blocking and(b) non-blocking op-
erations

erator; however, when there is a large number of small operations to do, the nonblocking
calls expose more parallelism to the system and enable the system to pipeline these opera-
tions. The net effects can be seen in the timeline in Figure 6.4, where the nonblocking calls
can leverage the double buffering on the accelerator to overlap communication between the
host processor and accelerator with computation that is occurring on the accelerator. While
this is conceptually straightforward, this paper aims to quantify the impact in the context
of a specific technology to motivate the development of appropriate APIs.

To target the way Sandia’s applications use DGEMM and FFT calls, we focus on imple-
mentations that can accelerate large numbers of small calls. Thus, rather than one large
unit in the FPGA, we have several smaller units that can each handle the processing for a
call. These are integrated with the host using double buffering techniques so that data can
be transferred between the host and FPGA while the computation is occurring. Figure 6.5
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Figure 6.5. Buffer approaches for(a) FFT and(b) DGEMM.

illustrates this concept for the FFT and DGEMM operations.

The FFT and DGEMM operations in Figure 6.5 take slightly different approaches. While
the FFT needsboth ports of a dual-ported RAM during the core operation, the DGEMM
operation does not. Therefore, the FFT uses full sized input, output, and internal buffers.
This is sufficient to provide double buffering for the FFT. The DGEMM operation, on the
other hand, allows the system to manage the double buffering. An input selection mech-
anism makes this transparent to the unit. In practice, this is implemented by splitting the
top and bottom of a single dual-ported RAM bank into independent buffers and selecting
based on the high order address bit.

Measurements from the XD1

To validate our analysis and simulations and to provide a concrete comparison point be-
tween microprocessors and FPGAs, we took measurements from the Cray XD1 and from
commodity microprocessors. Figure 6.6(a) compares the FFT performance of the FPGA on
the Cray XD1 to the Opteron on the same platform and a recent Pentium-4 Xeon processor.
The first observation about the graph is that it is very different from the “standard” bench-
mark graphs for the processors used, because our benchmarks performed 1000 operations
over 1000 different buffers where traditional benchmarks perform 1000 operations over the
same buffer.

The next important note is that the FPGA on the Cray XD1 can achieve a 60% to 125% per-
formance improvement, depending on problem size, if a nonblocking API is used. Using a
blocking API stands in stark contrast with 60%lower performance than the microproces-
sor. Results from the Pentium-4 Xeon indicate that this 2.5 year old FPGA that is only half
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Figure 6.7. Validation of the simulation models for(a) FFT and
(b) DGEMM

as big as the largest FPGA from that era can outperform one of the fastest current single
core processors — if, and only if, it uses a nonblocking interface.

Figure 6.6(b) presents results from DGEMM and contrasts with the FFT results. Modern
microprocessors are highly optimized to perform operations like DGEMM; thus, the FPGA
loses by as much as a factor of 2, even when it uses a nonblocking interface. Given that it
is a relatively old, relatively small FPGA, this is not surprising.

Simulation Results

Like microprocessors, FPGAs have reaped many benefits from Moore’s Law. In fact, re-
cent FPGA performance gains have outstripped the performance gains of microprocessors
To explore the near-term potential of FPGAs, we leveraged a hybrid discrete-event/cycle-
driven simulator. The initial simulations were used to validate the simulator. Figure 6.7
indicates that the simulator captures most of the salient points of the system. For the FFT,
the only point that is not in almost perfect agreement (within 1%) between the simulator
and the XD1 implementation is the 128 point non-blocking FFT. The simulation is more
representative of what can be achieved, but there is approximately 500 ns of overhead in
the XD1 implementation that is associated with buffer management that we are trying to
eliminate.

The DGEMM results are slightly less tightly correlated. For many cases, the simulation
results are within 1% of the measured values. From anN of 20 to 32, the results are
within 5%. Measurements indicate that at least a 1% difference can be attributed to the
inaccuracies in the actual clock rate on the XD1. Below anN of 16, the operations use
smaller transfers than the 128 point FFT; thus, the differences occur for the same reason
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— unexplained overhead in the interaction with the host that is being debugged. Blocking
simulations were only run over the range ofN from 32 to 64, since those are the only
points where the blocking implementation fully utilizes the resources. For these runs, the
simulations are within 3% of the measured values. Overall, we believe the simulations
provide sufficient predictive capabilities when the predicted differences are large.

The second set of simulations focused on the bandwidth and latency requirements for FP-
GAs now and as FPGAs increase in performance. These simulations used nonblocking
operations and swept latencies from a minimum of 50 ns to a maximum of 1000 ns. With
nonblocking operations, latency had no impact on the performance and those results are
omitted for brevity. FPGA sizes are modeled based on the Virtex2Pro50-7 on the Cray
XD1, the Virtex2Pro100-6 available on SRC systems, one Moore’s Law doubling (40
MACC units, 250 MHz, roughly a Virtex4-FX140) and two Moore’s Law doublings (80
MACC units, 380 MHz)2. Results presented in Figure 6.8 assume a latency between the
processor and FPGA of 250 ns.

For currently available systems (Figures 6.8 (a) and (c)), the choice of device matters.
Larger devices deliver more performance with bandwidths that are readily achievable. It
is also clear that PCI-X levels of bandwidth (500 MB/s/direction or 1000 MB/s total) are
not sufficient for the domains of interest discussed earlier, and, generally speaking, modern
FPGA systems need more bandwidth. Even the bandwidth of HT (1400 MB/s/direction
sustained) is not quite sufficient.

A more interesting story arises from Figures 6.8 (b) and (d). All but one pair of lines
completely overlaps with the generation after it all the way to 5 GB/s/direction. Two parts
with a 3× difference in performance are both bandwidth constrained to the same perfor-
mance in the domain of interest. A more aggressive design point could take the bandwidth
to the FPGA up to 10 GB/s/direction or even 20 GB/s/direction as technologies like HT-3
come online. While the graphs show the potential for strikingly high levels of performance,
the I/O connections to FPGAs will have to improve dramatically to leverage any of those
potential gains.

While the bandwidth requirements seem extreme, there are bright points. Foremost, it is
unlikely that the largest FPGAs (represented by the “two doublings” line) will ever be cost-
effective for HPC applications. With the performance of FPGAs growing faster than that
of microprocessors, this would indicate that a smaller, cheaper FPGA could deliver all of
the performance that the bandwidth will support. Also, with growth in computing power
comes growth in the amount and types of science that can be done. This tends to increase
the size of operations such that 16×16 DGEMMs and 128 point FFTs are likely to become
32×32 DGEMMs and 512 point FFTs in another generation. These trends will somewhat
reduce the bandwidth needed to achieve higher levels of FPGA performance.

The final set of simulations explored the impact of a traditional blocking API on FPGA

2These numbers assume that a generation gives 2× the transistor count, but somewhat under 2× the clock
rate. Clock rate growth is difficult to forecast for floating-point on FPGAs as it is virtually independent of
technology in the near term and depends on FPGA features introduced.
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Figure 6.8. Simulated impact of bandwidths as FPGA capabili-
ties scale for FFT ((a) and(b)) and DGEMM ((c) and(d))
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performance at two generations beyond the Virtex2Pro100. The latency between the pro-
cessor and the FPGA was set to an optimistic 50 ns (to offer every advantage to the blocking
approach) and bandwidth was set to 5 GB/s/direction to match what should be achievable
soon with HT or PCI-Express. Assuming that at least 1000 independent operations are
required yields the graphs in Figure 6.9. The blocking calls are 2× to 3× slower than their
nonblocking counterparts. More importantly, the blocking graph for the matrix multiply
startsat 32×32 because this is the first point at which a matrix multiply could fully utilize
the device.

Summary

It is important to recognize the mismatch between the way FPGA researchers assess FPGA
capabilities and the way applications would use the devices. Accelerator proponents like
to claim that they can accelerate standard libraries, but many applications do not call these
libraries in a way that can be exploited; thus, a new, non-blocking API is needed to expose
the parallelism to the hardware. Indeed, the issue of API impacts performance as much or
more than the issue of architectures with as much as a 3× loss in performance if the wrong
API is used.

That said, architecture is critically important. The performance that the Xilinx Virtex4-
FX140 should deliever will far outstrip the bandwidth that is readily available to it. With
5 GB/s/direction of bandwidth, this part (which should be available soon) would greatly
outstrip the capabilities of a microprocessor. And, modern interfaces can deliver almost
that level of bandwidth, but FPGA I/Os often limit the performance of those interfaces
(e.g. HT). This challenge multiplies with the next generation, where those parts cannot be
distinguished from current parts without delivering drastically more bandwidth.

As a final note, while these results were obtained with an FPGA focus, many of them are
generally applicable to accelerator technologies. Accelerator proponents typically offer
to accelerate DGEMM and FFT operations by attaching an accelerator to a commodity
microprocessor and using standard BLAS calls. These results indicate that this may work
in the near term for large operations, but in the longer term, the traditional blocking BLAS
calls will hide the parallelism that is required. Furthermore, for many of the DGEMM and
FFT operations used by scientific applications, the API is already a major barrier and the
system architecture (particularly bandwidth) will be an enormous barrier in the near future.
This is not meant to say that accelerators are infeasible, only that traditional library calls
will not be a productive way to use them.
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Chapter 7

Challenges to Deploying FPGAs

Even if FPGAs prove to have dramatic performance advantages, they still face many chal-
lenges to deployment. These range from algorithms to run on the new platform to the cost
and reliability of the platform itself.

Algorithms

Much as new algorithms and parallelization strategies were needed with the rise of the mas-
sively parallel processing (MPP) paradigm, new algorithms will be needed to leverage the
unique capabilities of FPGAs while interacting with microprocessors as peers. This means
partitioning the application differently than any system in existence today. As an example,
consider the typical node envisioned by many, where each node in an MPP consists of a mi-
croprocessor and an FPGA. The FPGA could exist in a completely subordinate state, where
the microprocessor makes calls that are then executed on the FPGA. The microprocessor
couldblock while these calls execute. This type of model, however, is what led Amdahl to
make his initial (and pessimistic) observations about the potentials of parallel computing.
A far better approach would be to refactor the algorithms to promote the FPGA to the status
of a full peer that concurrently ran a separate part of the algorithm.

Programmability

One of the weakest points for FPGAs has always been the challenges of programming the
devices. The ultimate problem is that traditional sequential languages (C, C++, Fortran) do
not express the kinds of parallelism that are inherent in a hardware device. Thus, legacy
code does not, and cannot, readily compile to modern FPGAs and deliver high perfor-
mance.

At the other end of the spectrum from traditional sequential languages are hardware de-
scription languages (HDLs). An HDL does an exemplary job of expressing hardware level
parallelism and the associated control flow. The only problem is that the vast majority of
applications developers do not know and do not want to know how to program in an HDL.
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Furthermore, development in an HDL is time consuming and tedious and would greatly
extend application development time.

A compromise position adds extensions to sequential languages (typically to C) that enable
the programmer to express parallelism that he otherwise could not. Unfortunately, the cur-
rent state of the art in this domain still sacrifices significant performance (at least 2×) while
still forcing the developer to significantly change his code (e.g. pointers are not typically
supported). Thus, even in the best case, where these tools mature to have comparable per-
formance to an HDL, the user is going to need an extremely compelling reason to rewrite
the application in the new language.

Portability

When application developers create a new application, they expect it to run everywhere.
One of the fundamental enablers of the widespread adoption of MPPs was the rise of the
MPI standard. With MPI, a single program would run on any MPP (and, now, commod-
ity clusters) with minimal porting effort. FPGAs are a long way from this goal. Most
FPGA programming environments are provided by a hardware vendor (at significant cost)
and are completely bound to a single platform. Some of the higher level languages can
be retargeted to a small selection of different platforms; however, the architecture of those
platforms currently vary so dramatically that it can be very challenging to obtain perfor-
mance portability.

Architecture

Most systems still treat the FPGA as a subordinate accelerator with asubroutinementality.
This leads to a mentality where either the FPGA or the hosting processor is executing a sin-
gle serial stream. The FPGA needs to become a full peer. Furthermore, as our results have
indicated, that FPGA needs to have remarkable levels of bandwidth to the host processor
to obtain data to process. Fortunately, as algorithms improve, the demand for bandwidth
could be reduced.

Cost

FPGA based accelerators are phenomenally expensive by HPC standards. Given an HPC
node that costs $5,000, adding a $10,000 FPGA can be quite prohibitive. This seriously
impacts the performance/cost advantage of the FPGA. In the future, if the performance
advantage of FPGAs becomes sufficiently compelling, it will be possible to use a lower
cost FPGA instead. This will be absolutely critical for the success of FPGAs in HPC.
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Reliability

An FPGA system that delivers an order of magnitude improvement over the best current
MPP will have many more parts than the MPP. Many of those parts will be FPGA devices
that are sensitive to soft-errors and are hard to detect errors in (see [31]). The corresponding
decrease in system reliability will be unacceptable for major HPC procurements.
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Chapter 8

Conclusions

FPGAs have remarkable potential for impacting the future of high performance computing.
Projections suggest that FPGAs could yield an order of magnitude performance improve-
ment over microprocessors. More importantly, many algorithms demonstrate a dramati-
cally highersustained percentageof peak performance than microprocessors. Together,
the potential for improvement can approach two orders of magnitude.

Unfortunately, FPGAs are not yet ready for production usage in HPC systems and face
major hurdles to becoming ready for production use. Issues of programming and porta-
bility are currently major barriers for applications developers, but there are organizations
such as OpenFPGA (www.openfpga.org) that are trying to address those barriers. Studies
at other national labs[31] have indicated that FPGAs are sufficiently succeptible to terres-
trial radiation to prevent their use in a large HPC system; however, device manufacturers
are working hard to address this problem. Finally, FPGAs still face a major barrier in
terms of cost, but the issue of cost can easily be addressed by using smaller devices if the
performance advantage is sufficiently compelling.

The net result is that the future of FPGAs depends heavily on the successes of industry
and academia in addressing many key challenges. FPGAs have numerous architectural and
market advantages that make them a compelling technologyif they can be deployed in a
reliable system at a reasonable cost.
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